• Title/Summary/Keyword: reactive oxygen species

Search Result 2,728, Processing Time 0.033 seconds

Phenanthrene-induced Oxidative DNA Damage of Lymphocytes and the Suppression by Ginseng Extract (페난트렌에 의한 임파구 DNA의 산화적 손상과 인삼추출물에 의한 억제)

  • Yoo, Ah-Reum;Lee, Mi-Young
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.355-360
    • /
    • 2009
  • Phenanthrene ($C_{14}H_{10}$) is a polycyclic aromatic hydrocarbon with three aromatic rings, and it can be produced by incomplete combustion of fossil fuels. Comet assay was used to examine the oxidative DNA damage of lymphocytes by phenanthrene and to measure the suppressive effects of ginseng extract on the DNA damage in this investigation. The in vitro oxidative DNA damage by phenanthrene increased in a dose-dependent manner in the lymphocyte. However, the DNA damage was significantly inhibited by ascorbate. Moreover, pretreatment, cotreatment and posttreatment with ginseng extract enhanced lymphocyte resistance to the phenanthrene-induced DNA damage. Phenanthrene enhanced the generation of intracellular reactive oxygen species, and the elevated reactive oxygen species level was reduced by treatment with ginseng extract.

Exploitation of Reactive Oxygen Species by Fungi: Roles in Host-Fungus Interaction and Fungal Development

  • Kim, Hyo Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1455-1463
    • /
    • 2014
  • In the past, reactive oxygen species (ROS) have been considered a harmful byproduct of aerobic metabolism. However, accumulating evidence implicates redox homeostasis, which maintains appropriate ROS levels, in cell proliferation and differentiation in plants and animals. Similarly, ROS generation and signaling are instrumental in fungal development and host-fungus interaction. In fungi, NADPH oxidase, a homolog of human $gp91^{phox}$, generates superoxide and is the main source of ROS. The mechanism of activation and signaling by NADPH oxidases in fungi appears to be largely comparable to those in plants and animals. Recent studies have shown that the fungal NADPH oxidase homologs NoxA (Nox1), NoxB (Nox2), and NoxC (Nox3) have distinct functions. In particular, these studies have consistently demonstrated the impact of NoxA on the development of fungal multicellular structures. Both NoxA and NoxB (but not NoxC) are involved in host-fungus interactions, with the function of NoxA being more critical than that of NoxB.

Reactive oxygen species-specific characteristics of transient receptor potential ankyrin 1 receptor and its pain modulation

  • Hyun-Ji Yoon;Sung-Cherl Jung
    • Journal of Medicine and Life Science
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Transient receptor potential ankyrin 1 (TRPA1) receptors are major polymodal nociceptors that generate primary pain responses in the peripheral nerve endings of the dorsal root ganglion neurons. Recently, we reported that the activation of TRPA1 receptors by reactive oxygen species (ROS) signaling, which is triggered by Ca2+ influx through T-type Ca2+ channels, contributes to prolonged pain responses induced by jellyfish toxin. In this review, we focus on the characteristics of the TRPA1 receptor involved in intracellular signaling as a secondary pain modulator. Unlike other transient receptor potential receptors, TRPA1 receptors can induce membrane depolarization by ROS without exogenous stimuli in peripheral and central sensory neurons. Therefore, it is important to identify the functional characteristics of TRPA1 receptors to understand pain modulation under several pathogenic conditions such as neuropathic pain syndromes and autoimmune diseases, which are mediated by oxidative signaling to cause chronic pain in the sensory system.

Multiple Roles of Peroxiredoxins in Inflammation

  • Knoops, Bernard;Argyropoulou, Vasiliki;Becker, Sarah;Ferte, Laura;Kuznetsova, Oksana
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.60-64
    • /
    • 2016
  • Inflammation is a pathophysiological response to infection or tissue damage during which high levels of reactive oxygen and nitrogen species are produced by phagocytes to kill microorganisms. Reactive oxygen and nitrogen species serve also in the complex regulation of inflammatory processes. Recently, it has been proposed that peroxiredoxins may play key roles in innate immunity and inflammation. Indeed, peroxiredoxins are evolutionarily conserved peroxidases able to reduce, with high rate constants, hydrogen peroxide, alkyl hydroperoxides and peroxynitrite which are generated during inflammation. In this minireview, we point out different possible roles of peroxiredoxins during inflammatory processes such as cytoprotective enzymes against oxidative stress, modulators of redox signaling, and extracellular pathogen- or damage-associated molecular patterns. A better understanding of peroxiredoxin functions in inflammation could lead to the discovery of new therapeutic targets.

Effect of Vitamin E Against the Cytotoxicity of Reactive Oxygen Species on Vascular Endothelial Cells

  • Kwon O-Yu;Park Seung-Taeck
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.255-259
    • /
    • 2006
  • Reactive oxygen species (ROS) is one of the main pathological factors in endothelial disorder. For example, an atherosclerosis is induced by the dysfunction of vascular endothelial cells. The dysfunction of vascular endothelial cells cascades to secrete intercellular adhesion molecule (ICAM)-l substance by ROS. Therefore, The ROS is regraded as an important factor of the injury of vascular endothelial cells and inducement of atherosclerosis. Oxygen radical scavengers playa key role to prevention of many diseases mediated by oxidative stress of ROS. In this study, the toxic effect of ROS on vascular endothelial cells and the effect of antioxidant, vitamin E on bovine pulmonary vascular endothelial cell line (BPVEC) treated with hydrogen peroxide were examined by the colorimetric assay. ROS decreased remarkably cell viability according to the dose- and time-dependent manners. In protective effect of vitamin E on BPVEC treated with hydrogen peroxide, vitamin E increased remarkably cell viability compared with control after BPVEC were treated with $15{\mu}M$ hydrogen peroxide for 6 hours. From these results, it is suggested that ROS has cytotoxicity on cultured BPVEC and oxygen radical scavenger such as vitamin E is very effective in prevention of oxidative stress-induced cytotoxicity.

  • PDF

Antioxidative Ability of Lactic Acid Bacteria (유산균의 항산화 효과)

  • 김현수;함준상
    • Food Science of Animal Resources
    • /
    • v.23 no.2
    • /
    • pp.186-192
    • /
    • 2003
  • The health benefits of friendly bacteria first came to the attention of the general public in 1908, when Dr. Elie Metchnikoff, a Russian biologist, wrote The Prolongation of Life. The longevity may be, in part, due to the antioxidative ability of lactic acid bacteria. However, the antioxidative effect of lactic acid bacteria has been reported only recently. Many kinds of reactive oxygen species can be formed in the human body and in food system, oxidative stress plays a significant pathological role in human disease. Antioxidants are effective for the reduction of oxidation induced by oxygen radicals by scavenging reactive oxygen species. Various synthetic and natural antioxidants have been reported, but there are doubts about the safety and long term effects on health. Antioxidants from natural sources are likely to be found more desirable. An elevated scavenging ability of reactive oxygen species would be a good property for commercially applied lactic acid bacteria. Antioxidant supplement or food containing antioxidants would be greatly applied for the reduction of oxidative damage for human body, and lactic acid bacteria are potentiated candidates for the production of functional foods or natural antioxidant supplements.

TETRAHYDROPAPAVEROLINE INDUCES DNA DAMAGE AND APOPTOTIC CELL DEATH THROUGH GENERATION OF REACTIVE OXYGEN SPECIES

  • Shin, Mi-Hyun;Jang, Jung-Hee;Lee, Jeong-Sang;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.124-124
    • /
    • 2001
  • Tetrahydropapaveroline(THP), a dopamine-derived 6,7-dihydroxy-l-(3',4'-dihydroxybenzyl)-1,2,3,4-tetrahydrosioquinoline, has been suspected as a possible dopaminergic neurotoxin to elicit Parkinsonism. Autoxidation or monoamine oxidase-mediated oxidation of THP and subsequent generation of reactive oxygen species (ROS) may contribute to the degeneration of dopaminergic neurons induced by this isoquinoline alkaloid.(omitted)

  • PDF

Arachidonic Acid Liberated through Activation of $iPLA_2$ Mediates the Production of Reactive Oxygen Species and Apoptosis Induced by N-Ethylmaleimide in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.242.2-243
    • /
    • 2002
  • We have previously reported that activation of $K^{+}$-$Cl^{-}$-cotransport (KCC) by N-ethylmaleimide (NEM) induces apoptosis through generation of reactive oxygen species (ROS) in HepG2 human hepatoblastoma cells. In this study we investigated the possible role of phospholipase $A_2$($PLA_2$)-arachidonic acid (AA) signals in the mechanism of the NEM actions. (omitted)

  • PDF