• Title/Summary/Keyword: real-time transmission

Search Result 1,434, Processing Time 0.028 seconds

Real-Time Transmission Method of Wireless Control Network using IEEE 802.15.4 Protocol (IEEE 802.15.4 기반의 무선 제어 망을 위한 실시간 전송기법에 대한 연구)

  • Lee, Jung-Il;Chol, Dong-Hyuck;Kim, Dong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.178-180
    • /
    • 2007
  • In this paper, a real-time transmission algorithm based on IEEE 802.15.4 is proposed. The superframe of IEEE 802.15.4 is applied to the transmission method of real-time mixed data (periodic data, sporadic data, and non real-time message). The simulation results show the real-time performance of sporadic data is improved by using the proposed transmission algorithm.

  • PDF

A Dynamic Backoff Adjustment Method of IEEE 802.15.4 Networks for Real-Time Sporadic Data Transmission (비주기적 실시간 데이터 전송을 위한 IEEE 802.15.4 망의 동적 백오프 조정 기법에 대한 연구)

  • Lee, Jung-Il;Kim, Dong-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.318-325
    • /
    • 2008
  • In this paper, a dynamic backoff adjustment method of IEEE 802.15.4 is proposed for time-critical sporadic data in a noisy factory environment. For this, a superframe of IEEE 802.15.4 is applied to a real-time mixed data (periodic data, sporadic data, and non real-time message) transmission in factory communication systems. To guarantee a channel access of real-time sporadic(non-periodic) data, a transmission method using the dynamic backoff is applied to wireless control networks. For the real-time property, different initial BE, CW parameters are used for the dynamic backoff adjustment method. The simulat-ion results show an enhancement of the real-time performance of sporadic emergency data. The proposed method provides the channel access of real-time sporadic data efficiently, and guarantee real-time transmission simultaneously within a limite-d timeframe.

RTP based Multicast Transmission Technique of Video Stream for Real-Time Multimedia Transmission (실시간 멀티미디어 전송을 위한 RTP 기반 비디오 스트림의 멀티캐스트 전송 기법)

  • 정규수;양종운;나인호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1104-1109
    • /
    • 2001
  • In this paper, we describe a method for real-time transmitting video streams based on RTP. In order to guarantee synchronous video streams, we propose a method to grasp network situations by analyzing end-to-end network traffic. In addition, we present an algorithm for satisfying QoS requirements of real-time multimedia transmission and maintaining continuity of transmission. It describes a buffering method for overcoming bandwidth limitations and an analyzing method based on RTCP for grasping network traffic situation to resolve the problem of real-time transmission of video streams.

  • PDF

A Method of Data Transmission for Performance Improvement of Real Time GNSS Data Processing in Multi-Reference Network Station (다중 수신국 실시간 위성항법데이터 처리 성능향상을 위한 데이터 송·수신 설계)

  • Kim, Gue-Heon;Son, Minhyuk;Lee, Eunsung;Heo, Moon-Beom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.39-44
    • /
    • 2012
  • This paper propose a transmission method for "Transportation system" that can decide precise position under wide area road traffic environment. For precise position detecting, central station collect multiple receiver station's satellite navigation data and generate correction information. In this process, we need efficient real time transmission method for satellite navigation message that has variable data size. We propose real time data transmission method. This real time transmission method offer efficient processing structure for multiple receiver station's satellite navigation message. This paper explains proposed real time transmission method and proofs this transmission method.

Wireless Fieldbus for Networked Control Systems using LR-WPAN

  • Choi, Dong-Hyuk;Kim, Dong-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.119-125
    • /
    • 2008
  • This paper examines the use of a wireless Fieldbus based on IEEE 802.15.4 MAC protocol. The superframe of IEEE 802.15.4 is applied to a transmission scheme of real-time mixed data. The transmission and bandwidth allocation scheme are proposed for real-time communication using a superframe. The proposed wireless Fieldbus protocol is able to transmit three types of data (periodic data, sporadic data, and non real-time messages), and guarantee realtime transmission simultaneously within a limited timeframe.

Analysis of Real-time Error for Remote Estimation Based on Binary Markov Chain Model (이진 마르코프 연쇄 모형 기반 실시간 원격 추정값의 오차 분석)

  • Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.317-320
    • /
    • 2022
  • This paper studies real-time error in the context of monitoring a symmetric binary information source over a delay system. To obtain the average real-time error, the delay system is modeled and analyzed as a discrete time Markov chain with a finite state space. Numerical analysis is performed on various system parameters such as state transition probabilities of information source, transmission times, and transmission frequencies. Given state transition probabilities and transmission times, we investigate the relationship between the transmission frequency and the average real-time error. The results can be used to investigate the relationship between real-time errors and age of information.

Adjusting Transmission Power for Real-Time Communications in Wireless Sensor Networks

  • Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • As the new requirements for wireless sensor networks are emerging, real-time communications is becoming a major research challenge because resource-constrained sensor nodes are not powerful enough to accommodate the complexity of the protocol. In addition, an efficient energy management scheme has naturally been a concern in wireless sensor networks for a long time. However, the existing schemes are limited to meeting one of these two requirements. To address the two factors together, we propose real-time communications with two approaches, a protocol for satisfied conditions and one for unsatisfied. Under the satisfied requirement, existing real-time protocol is employed. On the other hand, for the unsatisfied requirement, the newly developed scheme replaces the existing scheme by adjusting the transmission range of some surplus nodes. By expanding the transmission range, the end-to-end delay is shortened because the number of intermediate nodes decreases. These nodes conserve their energy for real-time communications by avoiding other activities such as sensing, forwarding, and computing. Finally, simulation results are given to demonstrate the feasibility of the proposed scheme in high traffic environments.

Data Transmission Processing System Design for Real-Time Distributed Simulation by Using Software Design Patterns (소프트웨어 디자인 패턴을 적용한 실시간 분산 시뮬레이션을 위한 데이터 전달처리 시스템 설계)

  • Suk, Jin-Weon;Ryoo, In-Tae
    • Journal of Digital Contents Society
    • /
    • v.10 no.4
    • /
    • pp.649-657
    • /
    • 2009
  • Usually, The data transmission processing efficiency of the distributed system running on high speed networks depends on the system architecture and the data transmission processing system. In order to secure the real-time rate and the system reliability, the real-time distributed simulation system on the distributed environment has tried to satisfy the performance required by the data transmission processing system. However, the client/server-based data transmission processing system in the real-time simulation system has been difficult to satisfy the system stability, extensibility and maintenability, especially when system changes. So, it is natural to study another improved data transmission processing system to solve the problems at the existing real-time simulation system. After analyzing the existing real-time simulation system, this paper will propose the improved real-time data transmission system by using Software Design Pattern, which enhances extensibility, interoperability, reusability and maintenability of the system.

  • PDF

Real-Time Multicast Transmission Technique of Video Stream using RTP (RTP를 이용한 비디오 스트림의 실시간 멀티캐스트 전송 기법)

  • 정규수;양종운;나인호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.169-172
    • /
    • 2001
  • In this paper, we describe a method for real-time transmitting video streams based on RTP In order to guarantee synchronous video streams, we propose a method to grasp network situations by analyzing end-to-end network traffic. In addition, we present an algorithm for satisfying QoS requirements of real-time multimedia transmission and maintaining continuity of transmission. It describes a buffering method for overcoming bandwidth limitations and an analyzing method based on RTCP for grasping network traffic situation to resolve the problem of real-time transmission of video streams.

  • PDF

Analysis of Real-time Error for Geo/D/1/1 Model (Geo/D/1/1 모형에서의 실시간 원격 추정값의 오차 분석)

  • Yutae, Lee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.135-138
    • /
    • 2023
  • In this paper, we study real-time error in the context of monitoring a binary information source through a delay system. To derive the average real-time error, we model the delay system as a discrete time Geo/D/1/1 queueing model. Using a discrete time three-dimensional Markov chain with finite state space, we analyze the queueing model. We also perform some numerical analysis on various system parameters: state transition probabilities of binary information source; transmission times; and transmission frequencies. When the state changes of the information source are positively correlated and negatively correlated, we investigate the relationship between transmission time and transmission frequency.