• Title/Summary/Keyword: reasoning ability

Search Result 276, Processing Time 0.025 seconds

A Study on the Assessment of Reasoning Ability Using Dynamic Geometry Software (탐구형 기하소프트웨어를 활용한 추론능력 평가에 관한 연구)

  • Lee, Keun-Ju;Cho, Min-Shik
    • Journal of the Korean School Mathematics Society
    • /
    • v.9 no.4
    • /
    • pp.459-479
    • /
    • 2006
  • The purpose of this study is to investigate the applicability of DGS(dynamic geometry software) for the assessment of reasoning ability and the influence of DGS on the process of assessing students' reasoning ability in middle school geometry. We developed items for assessing students' reasoning ability by using DGS in the connected form of 'construction - inductive reasoning - deductive reasoning'. And then, a case study was carried out with 5 students. We analyzed the results from 3 perspectives, that is, the assessment of students' construction ability, inductive reasoning ability, and justification types. Items can help students more precisely display reasoning ability Moreover, using of DGS will help teachers easily construct the assessment items of inductive reasoning, and widen range of constructing items.

  • PDF

A Study on Correlations among Affective Characteristics, Mathematical Problem-Solving, and Reasoning Ability of 6th Graders in Elementary School (초등학교 고학년 아동의 정의적 특성, 수학적 문제 해결력, 추론 능력간의 관계)

  • 이영주;전평국
    • Education of Primary School Mathematics
    • /
    • v.2 no.2
    • /
    • pp.113-131
    • /
    • 1998
  • The purpose of this study is to investigate the relationships among affective characteristics, mathematical problem-solving abilities, and reasoning abilities of the 6th graders for mathematics, and to analyze whether the relationships have any differences according to the regions, which the subjects live. The results are as follows: First, self-awareness is the most important factor which is related mathematical problem-solving abilities and reasoning abilities, and learning habit and deductive reasoning ability have the most strong relationships. Second, for the relationships between problem-solving abilities and reasoning abilities, inductive reasoning ability is more related to problem-solving ability than deductive reasoning ability Third, for the regions, there is a significant difference between mathematical abilities and deductive reasoning abilities of the subjects.

  • PDF

A Study on Teaching Probabilistic Reasoning of Elementary School Mathematics (초등 수학과 확률적 추론 지도에 관한 연구)

  • Kim Tae-Wook;Nam Seung-In
    • Education of Primary School Mathematics
    • /
    • v.9 no.2 s.18
    • /
    • pp.75-87
    • /
    • 2005
  • For Probabilistic Reasoning Ability is useful to predict uncertain fact from information, it's getting more important. But when we consider the actual condition of teaching Probabilistic Reasoning Ability, it doesn't correspond with its importance. So the purpose of this study is, by developing Basic Contents of Probabilistic Reasoning Teaching; by developing and applying Probabilistic Reasoning Teaching Program, to study how the application of it effects the progress of the student's Probabilistic Reasoning Ability.

  • PDF

The Role of The Prefrontal Lobes in Scientific Reasoning (과학적 추론 능력의 발달에서 전두엽연합령의 역할)

  • Hur, Myoung;Lawson, Anton E.;Kwon, Young-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.4
    • /
    • pp.525-540
    • /
    • 1997
  • The present study tested the hypothesis that maturation of the prefrontal lobes is a crucial factor determining the performance of scientific reasoning tasks, Functions of the prefrontal lobes, such as activating relevant information, sequential planning and monitoring, and inhibiting irrelevant information, are related thinking patterns with scientific reasoning. Therefore, we inferred the idea that the prefrontal lobes play an important role in scientific reasoning. To test the hypothesis. the present study investigated a prefrontal lobe patient's task solving procedures in scientific reasoning tasks and the correlation and regression analysis between a test of prefrontal lobe function and two scientific reasoning tasks, The perseverative errors in the Wisconsin Card Sorting Test(WCST) was used as a measure of the prefrontal lobe function, The Melinark Type Task and the Classroom Test of Scientific Reasoning were used as measures of scientific reasoning abilities. Ages and Group Embedded Figure Test were also used as measures of two alternative hypotheses, general maturation and field independency respectively. The prefrontal lobe patient showed a crucial deficiency in solving scientific reasoning tasks. In the tasks, the patient could not used the reasoning of If... and... then... therefore pattern. In correlation study, the perseveration errors of the WCST showed a significantly negative correlation with two scientific reasoning tasks. Multiple regression study also showed that the perseveration errors measured as a function of the prefrontal lobes have more contribution to scientific reasoning ability than contributions of alternative hypotheses. Therefore, the present study supported the hypothesis that prefrontal lobes play a crucial role in scientific reasoning ability, What function of the prefrontal lobes do play crucial role in scientific reasoning? The present study provided an explanation for the question, which inhibiting ability of the prefrontal lobes is responsible for the scientific reasoning ability, in a part at least. That is, perseverative tendency in task-solving procedures causes a deficiency of an ability to inhibit the wrong information to solve a task. The present study provided a possibility of neuropsychological approach in science education research. The present study also showed an importance of the prefrontal lobe development in the performance of scientific reasoning task.

  • PDF

A Meta-analysis on the Logical Thinking Ability of Korean Middle-School Students - Meta-analysis of the researches between 1980 and 2000 - (우리나라 중학생들의 논리적 사고 능력에 대한 메타 분석 - 1980 ${\sim}$ 2000년까지의 학술지 게재 논문을 중심으로 -)

  • Kim, Young-Min;Kim, Soo-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.4
    • /
    • pp.437-449
    • /
    • 2009
  • The purpose of the study is to meta-analyze research results on Korean students' logical thinking ability. The results of meta-analysis on the research studies between the year 1980 and the year 2000 show that about 40-50% of Korean middle school students have conservation reasoning, proportional reasoning and combinatorial reasoning abilities, and that about 25-30% of them have control of variables and probability reasoning abilities. In addition, only 8% of the Korean middle-school students have correlational ability. When comparing their logical thinking ability results with those of Japanese and American middle-school students, The ratio (32.6%) of Korean middle-school students who have formal thought ability is a little higher than that of American students (30.6%), but much lower than that of Japanese students (50.1%).

A Comparison on the Relations between Affective Characteristics and Mathematical Reasoning Ability of Elementary Mathematically Gifted Students and Non-gifted Students (초등 수학영재와 일반학생의 정의적 특성과 수학적 추론 능력과의 관계 비교)

  • Bae, Ji Hyun;Ryu, Sung Rim
    • Education of Primary School Mathematics
    • /
    • v.19 no.2
    • /
    • pp.161-175
    • /
    • 2016
  • The purpose of this study is to measure the differences in affective characteristics and mathematical reasoning ability between gifted students and non-gifted students. This study compares and analyzes on the relations between the affective characteristics and mathematical reasoning ability. The study subjects are comprised of 97 gifted fifth grade students and 144 non-gifted fifth grade students. The criterion is based on the questionnaire of the affective characteristics and mathematical reasoning ability. To analyze the data, t-test and multiple regression analysis were adopted. The conclusions of the study are synthetically summarized as follows. First, the mathematically gifted students show a positive response to subelement of the affective characteristics, self-conception, attitude, interest, study habits. As a result of analysis of correlation between the affective characteristic and mathematical reasoning ability, the study found a positive correlation between self-conception, attitude, interest, study habits but a negative correlation with mathematical anxieties. Therefore the more an affective characteristics are positive, the higher the mathematical reasoning ability are built. These results show the mathematically gifted students should be educated to be positive and self-confident. Second, the mathematically gifted students was influenced with mathematical anxieties to mathematical reasoning ability. Therefore we seek for solution to reduce mathematical anxieties to improve to the mathematical reasoning ability. Third, the non-gifted students that are influenced of interest of the affective characteristics will improve mathematical reasoning ability, if we make the methods to be interested math curriculum.

An analysis of spatial reasoning ability and problem solving ability of elementary school students while solving ill-structured problems (초등학생들의 비구조화된 문제 해결 과정에서 나타나는 공간 추론 능력과 문제 해결 능력)

  • Choi, Jooyun;Kim, Min Kyeong
    • The Mathematical Education
    • /
    • v.60 no.2
    • /
    • pp.133-157
    • /
    • 2021
  • Ill-structured problems have drawn attention in that they can enhance problem-solving skills, which are essential in future societies. The purpose of this study is to analyze and evaluate students' spatial reasoning(Intrinsic-Static, Intrinsic-Dynamic, Extrinsic-Static, and Extrinsic-Dynamic reasoning) and problem solving abilities(understanding problems and exploring strategies, executing plans and reflecting, collaborative problem-solving, mathematical modeling) that appear in ill-structured problem-solving. To solve the research questions, two ill-structured problems based on the geometry domain were created and 11 lessons were given. The results are as follows. First, spatial reasoning ability of sixth-graders was mainly distributed at the mid-upper level. Students solved the extrinsic reasoning activities more easily than the intrinsic reasoning activities. Also, more analytical and higher level of spatial reasoning are shown when students applied functions of other mathematical domains, such as computation and measurement. This shows that geometric learning with high connectivity is valuable. Second, the 'problem-solving ability' was mainly distributed at the median level. A number of errors were found in the strategy exploration and the reflection processes. Also, students exchanged there opinion well, but the decision making was not. There were differences in participation and quality of interaction depending on the face-to-face and web-based environment. Furthermore, mathematical modeling element was generally performed successfully.

Exploring Student's Ability to Improve Debate Based on Mathematics Competencies (수학교과역량에 기반한 학습자의 토론 능력 향상 방안 탐색)

  • Kim, Soocheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.12
    • /
    • pp.1-10
    • /
    • 2018
  • The purpose of this study is to analyze the mathematics competencies required in middle school Korean language class to find out ways to improve student's debate ability. The results of the analysis showed that creativity and information processing ability in research activities; problem solving ability, creativity, information processing ability in planning activities; reasoning and creativity, information processing ability in rebutting activities; problem solving and reasoning in summary activities. In cross-inquiry activities, problem solving and reasoning, information processing, and creativity are required; creativity in final focus; problem solving and reasoning ability in judgment and general review; preparation time activities require problem solving, reasoning, and information processing ability. Therefore, in order to improve the debate ability of the students, it is required that the mathematics competencies such as problem solving, reasoning, information processing, and creativity are increased.

The Relationship between Conservation Reasoning and Functional Prefrontal Lobe in Elementary School Students (초등학교 저학년 학생의 전두엽연합령의 기능과 보존논리 형성과의 관계에 대한 연구)

  • Kim, Young-Shin;Kwon, Yong-Ju;Bae, Yoon-Ju;Jeong, Jin-Su;Jeong, Wan-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.3
    • /
    • pp.417-428
    • /
    • 2004
  • Conservation reasoning makes operational thought possible as a functional tool and it is the essential concept not only in the area of science and mathematics but also in several aspects of daily life. The abilities to solve mathematical problems and that of scientific reasoning and abstract way of thinking depend on whether thereis conservation reasoning or not and they are critical concepts that enables us to confirm the steps of cognitive development. Therefor in the study, we emphasized the issue that is the ways to speed up the scientific era by analyzing the correlation between the formation of conservation reasoning and neuro-cognitive variables. About 50% of 1-3 grade students did not had conservation reasoning skills. The formation of conservations was not linear. Scientific reasoning ability, planing and inhibiting ability were significantly different in levels of conservation, And, conservation reasonings were significantly correlated with cognitive variables. Scientific reasoning and planning ability significantly explained about 20% of the conservation reasoning ability of 1-3 grades.

The Effects of Leaner-Centered Mathematical Instructions on Students' Reasoning Ability and Achievement (학습자 중심 수학 수업이 학생의 추론 능력과 학업성취도에 미치는 영향: 초등학교 4학년 분수 및 다각형 단원을 중심으로)

  • Cha, So-Jeong;Kim, Jinho
    • Education of Primary School Mathematics
    • /
    • v.24 no.1
    • /
    • pp.43-69
    • /
    • 2021
  • The purpose of this study is to confirm the influences of learner-centered instruction on learners' achievement and reason ability. In order to accomplish them, the fraction unit and the polygonal unit in the fourth grade were implemented with teaching methods and materials suitable for learner-centered mathematics instruction. Some conclusions could be drawn from the results as follows: First, learner-centered mathematics instruction has a more positive effect on learning of learned knowledge and generating unlearned knowledge in the experimental period than teacher-centered instructions. Second, learner-centered instruction makes an influence of low learning ability on getting achievement positively. Third, as the experimental treatment is repeated, learner-centered instruction has a positive effect on students' reasoning ability. The reasoning ability of students showed a difference in the comparison between the experimental group and the comparative group, and within the experimental group, there was a positive effect of the extension of the positive reasoning ability. Fourth, it can be estimated that the development of students' reasoning ability interchangeably affected their generation test results.