• 제목/요약/키워드: red ginseng oil

검색결과 50건 처리시간 0.028초

Oxidative stability of extracts from red ginseng and puffed red ginseng in bulk oil or oil-in-water emulsion matrix

  • Lee, Sang-Jun;Oh, Sumi;Kim, Mi-Ja;Sim, Gun-Sub;Moon, Tae Wha;Lee, JaeHwan
    • Journal of Ginseng Research
    • /
    • 제42권3호
    • /
    • pp.320-326
    • /
    • 2018
  • Background: Explosive puffing can induce changes in the chemical, nutritional, and sensory quality of red ginseng. The antioxidant properties of ethanolic extracts of red ginseng and puffed red ginseng were determined in bulk oil and oil-in-water (O/W) emulsions. Methods: Bulk oils were heated at $60^{\circ}C$ and $100^{\circ}C$ and O/W emulsions were treated under riboflavin photosensitization. In vitro antioxidant assays, including 2,2-diphenyl-1-picrylhudrazyl, 2,2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid, ferric reducing antioxidant power, total phenolic content, and total flavonoid content, were also performed. Results: The total ginsenoside contents of ethanolic extract from red ginseng and puffed red ginseng were 42.33 mg/g and 49.22 mg/g, respectively. All results from above in vitro antioxidant assays revealed that extracts of puffed red ginseng had significantly higher antioxidant capacities than those of red ginseng (p < 0.05). Generally, extracts of puffed red and red ginseng had high antioxidant properties in riboflavin photosensitized O/W emulsions. However, in bulk oil systems, extracts of puffed red and red ginseng inhibited or accelerated rates of lipid oxidation, depending on treatment temperature and the type of assay used. Conclusion: Although ethanolic extracts of puffed red ginseng showed stronger antioxidant capacities than those of red ginseng when in vitro assays were used, more pro-oxidant properties were observed in bulk oils and O/W emulsions.

인삼속(Pauax species) 식물의 정유성분 조성 비교 (Comparative Study on the Essential Oil Components of Panax Species)

  • 고성룡;최강주;김영회
    • Journal of Ginseng Research
    • /
    • 제20권1호
    • /
    • pp.42-48
    • /
    • 1996
  • This study was carried out to determine the differences of essential oil components among Korean, Chinese and Japanese red ginseng, and Korean white ginseng (Panax ginseng C.A Mayer) , American and Canadian ginseng (P. Quinquefolium), and sanchi ginseng (P notoginseng). The steam distilled oils of these ginsengs were analyzed by GC and GC-MS, and 22 sesquiterpenes, 8 sesquiterpene alcohols, 8 monoterpenes, 5 aldehydes, 4 esters, 3 acids, 2 alcohols and 5 miscellaneous components were identified. The major oil components of Korean, Chinese and Japanese red ginseng were $\beta$-panasinsene, $\beta$-caryophyllene, $\alpha$-panasinsene, $\alpha$-neoclovene, selina-4,11-diane, bicyclo-ger-macrene and spathulenol. The contents of $\beta$-panasinsene, $\alpha$-neoclovene, $\alpha$-basabolene and spathulenol were higher in Korean red ginseng than Chinese and Japanese red ginseng. The contents of $\alpha$-cubebene, selina-4,11-diene and ledol were higher in Chinese red ginseng than Korean and Japanese red ginseng, but those of selina-4,11-diene and spathulenol were lower in Japanese red ginseng than Korean or Chinese red ginseng. On the other hand, the GC patterns of the oils from American, Canadian and sanchi ginseng were different from that of Korean white ginseng.

  • PDF

Safety of red ginseng oil for single oral administration in Sprague-Dawley rats

  • Bak, Min-Ji;Kim, Kyu-Bong;Jun, Mira;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • 제38권1호
    • /
    • pp.78-81
    • /
    • 2014
  • The single oral administration of red ginseng oil (5000 mg/kg) to Sprague-Dawley rats induced no changes in behavioral patterns, clinical signs, and body weight, and hepatotoxicity parameters such as aspartate aminotransferase and alanine aminotransferase for 14 d. Therefore, these results suggest that the red ginseng oil is safe and nontoxic acutely.

옥수수기름 및 우지 식이에 의한 혈소판 응집 반응과 혈액응고에 있어서 홍삼 지용성성분이 미치는 영향 (Effects of Lipophilic Fraction from Korean Red Ginseng on Platelet Aggregation and Blood Coagulation in Rats Fed with Corn Oil and Beef-tallow Diet)

  • 이정희;박화진
    • Journal of Ginseng Research
    • /
    • 제19권3호
    • /
    • pp.206-211
    • /
    • 1995
  • This study was investigated to find the effects of petroleum ether extract (Lipophilic fraction) from Korean red ginseng on platelet aggregation and thrombin time of the plasma in two groups of the experimental rats. One group of rats were fed with 15% corn oil (15%kg-diet) containing a number of 18 : 2 (linoleic acid) or 15% beef-tallow (15%/kg-diet) containing saturated fatty acids for 3 weeks, and were followed by feeding the petroleum ether extract (25 mg/kg-diet) for 3 weeks. The other group of rats (control group) were fed with 15% corn oil or 15% beef-tallow for 6 weeks. The platelet aggregation induced by thrombin and collagen was significantly inhibited and the thrombin time was prolonged in the 15% corn oil plus petroleum ether extract administrated group than in the 15% corn oil administrated group. And the same results were shown in the 15% beef-tallow plus petroleum ether extract administrated group. These results suggest that the petroleum ether extract from Korean red ginseng may have the beneficial effects on the inhibition of the platelet aggregation and the inhibition of blood coagulation induced by dietary fats.

  • PDF

효소 처리 홍삼을 함유한 오일의 항산화 효과 (Antioxidant Effect of Oil Containing Cellulase-Treated Red Ginseng.)

  • 김현정;양선아;임남경;지광환;이인선
    • 생명과학회지
    • /
    • 제18권3호
    • /
    • pp.323-328
    • /
    • 2008
  • 홍삼의 유효 활성 성분을 함유한 오일을 제조하고자, 세절한 홍삼을 여러 효소로 처리하여 항산화능을 검토한 후 가장 적합한 효소를 선정하여 홍삼을 효소처리하고 10배 비율의 대두유 및 올리브유를 각각 첨가하여 $40^{\circ}C$ 에서 15일간 숙성하면서 홍삼유를 제조하였다. 그 결과, 0.5% cellulase로 처리한 홍삼액에서 가장 높은 항산화 활성이 있음을 확인하였다. 그리고 홍삼을 0.5% cellulase로 처리하여 제조한 홍삼유의 과산화물가는 오일 자체만 보관한 대조군에 비해 유의적으로 감소되었고, 홍삼의 항산화 활성 성분의 용출은 올리브유보다 대두유에서 더 증가하였고, 특히 0.5% cellulase 처리한 홍삼 대두유의 TBA가도 유의적으로 감소되었다. 홍삼유의 DPPH radical 소거능도 홍삼만으로 추출한 대두유에 비해 0.5% cellulase 처리한 홍삼 대두유에서 더 큰 DPPH 소거능을 보였다. 대두유로 제조한 홍삼유의 항산화비타민 함량 분석에서는 비타민 A는 검출되지 않았으나, 비타민 E 함량은 대두유보다 홍삼 첨가 대두유에서 1.7배 정도 증가하였고, 0.5% cellulase를 처리한 홍삼첨가 대두유에서 2.3배 정도 증가되어 홍삼의 0.5% cellulase 처리에 의해 비타민 E의 용출이 더 증가하였다.

Rat 혈소판의 cGMP생성에 있어서 홍삼 지용성 분획과 단백질 분획의 영향 (Effect of Lipophilic Fraction and Protein Fraction of Korean Red Ginseng on the Production of cGMP In Rat Platelets)

  • 이만휘;이정희;박화진
    • Journal of Ginseng Research
    • /
    • 제18권2호
    • /
    • pp.108-112
    • /
    • 1994
  • Rats (Sprague Dawley, male, 200 g) were fed with 15% corn oil containing a large quantity of 18 2 (linoleic acid) for 3 weeks, and were followed by feeding the petroleum ether extracts from Korean red ginseng for 3 weeks. cGMP was produced more in platelets prepared from both 15% corn oil and petroleum ether extracts-fed group than in platelets only 15% corn oil-fed group, indicating that the production of cGMP is increased by feeding the petroleum ether extracts. When this platelet was stimulated by phorbol-12-myristate-13-acetate (PMA), the level of cGMP was decreased. However, the platelets in medium containing protein fraction (200 $\mu\textrm{g}$/ml) was stimulated by PMA, the production of cGMP inhibited by PMA was increased by 3 times or more. These results suggest that both the protein fraction and the petroleum ether extracts from Korean red ginseng are synergistic in the productiorl of cGMP, and they may have the antiplatelet effects.

  • PDF

Red ginseng (Panax ginseng Meyer) oil: A comprehensive review of extraction technologies, chemical composition, health benefits, molecular mechanisms, and safety

  • Truong, Van-Long;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • 제46권2호
    • /
    • pp.214-224
    • /
    • 2022
  • Red ginseng oil (RGO), rather than the conventional aqueous extract of red ginseng, has been receiving much attention due to accumulating evidence of its functional and pharmacological potential. In this review, we describe the key extraction technologies, chemical composition, potential health benefits, and safety of RGO. This review emphasizes the proposed molecular mechanisms by which RGO is involved in various bioactivities. RGO is mainly produced using organic solvents or supercritical fluid extraction, with the choice of method greatly affecting the yield and quality of the end products. RGO contains a high unsaturated fatty acid levels along with considerable amounts of lipophilic components such as phytosterols, tocopherols, and polyacetylenes. The beneficial health properties of RGO include cellular defense, antioxidation, anti-inflammation, anti-apoptosis, chemoprevention, hair growth promotion, and skin health improvement. We propose several molecular mechanisms and signaling pathways that underlie the bioactivity of RGO. In addition, RGO is regarded as safe and nontoxic. Further studies on RGO must focus on a deeper understanding of the underlying molecular mechanisms, composition-functionality relationship, and verification of the bioactivities of RGO in clinical models. This review may provide useful information in the development of RGO-based products in nutraceuticals, functional foods, and functional cosmetics.

Biological Activities and Metabolite Analysis of Various Extracts and Fractions from Red Ginseng Marc

  • Lee, Dong Gyu;Jang, Ik Soon;Kang, Young-Hwa
    • 한국자원식물학회지
    • /
    • 제33권6호
    • /
    • pp.597-603
    • /
    • 2020
  • Red ginseng marc (RGM) has been used on primary industries using fertilizer or forage, and it mostly has been dumped. To improve utilization of RGM, the biological activities of RGM were examined. RGM was extracted and fractionated using various solvents and their biological activities were compared. The hexane fraction from the methanol extract of RGM (RGMMH) showed strong anti-cancer activity (58.56 ± 6.04% at 100 ㎍/mL) and anti-inflammatory effect (65.72 ± 1.33% at 100 ㎍/mL). But, oil extract of RGM extracted with hexane (RGMH) showed low activities (anti-cancer: 16.42 ± 3.33%, at 100 ㎍/mL, anti-inflammatory activity: 29.46 ± 2.10%, at 100 ㎍/mL). Their metabolites were analyzed using HPLC. Panaxydol known as anti-cancer compound of RGM was one of major compounds in RGMMH. Meanwhile, panaxydol was detected in trace amount in red ginseng marc oil (RGMH). In addition, RGMMH and RGMH showed big differences in HPLC profiling. This research suggests optimal extraction method of RGM oil.

Subacute oral toxicity and bacterial mutagenicity study of Korean Red Ginseng oil

  • Seo, Hwi Won;Suh, Jae Hyun;So, Seung-Ho;Kyung, Jong-Soo;Kim, Yong-Soon;Han, Chang-Kyun
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.595-601
    • /
    • 2017
  • Background: Red ginseng oil (RGO) is produced by supercritical $CO_2$ extraction of secondary products derived from Korean Red Ginseng extract. As the use of RGO has increased, product safety concerns have become more important. Methods: In the present study, the subacute oral toxicity and bacterial reverse mutagenicity of RGO were evaluated. Sprague-Dawley rats were orally administered with RGO for 28 d by gavage. Daily RGO dose concentrations were 0 mg/kg body weight (bw), 500 mg/kg bw, 1,000 mg/kg bw, or 2,000 mg/kg bw per day. Bacterial reverse mutation tests included five bacterial strains (Escherichia coli WP2 and Salmonella typhimurium TA98, TA100, TA1535, and TA1537), which were used in the presence or absence of metabolic activation. The plated incorporation method for mutation test was used with RGO concentrations ranging from $312.5{\mu}g$ to $5,000{\mu}g$ per plate. Results: The subacute oral toxicity test results did not reveal any marked changes in clinical characteristics. There were no toxicological changes related to RGO administration in hematological and serum biochemical characteristics in either control or treatment animals. Furthermore, no gross or histopathological changes related to RGO treatment were observed. The bacterial reverse mutation test results did not reveal, at any RGO concentration level and in all bacterial strains, any increase in the number of revertant colonies in the RGO treatment group compared to that in the negative control group. Conclusion: The no-observed-adverse-effect level of RGO is greater than 2,000 mg/kg bw and RGO did not induce genotoxicity related to bacterial reverse mutations.

Estrogen Receptor Is Activated by Korean Red Ginseng In Vitro but Not In Vivo

  • Shim, Myeong-Kuk;Lee, Young-Joo
    • Journal of Ginseng Research
    • /
    • 제36권2호
    • /
    • pp.169-175
    • /
    • 2012
  • Ginseng has been used as a traditional medicine for treatment of many diseases and for general health maintenance in people of all ages. Ginseng is also used to ameliorate menopausal systems. We investigated the estrogenic activity of Korean red ginseng (KRG) in a transient transfection system, using estrogen receptor (ER) and estrogen-responsive luciferase plasmids in MCF-7 cells. The extract activated both ER${\alpha}$ and ER${\beta}$. KRG modulated the mRNA levels of estrogen-responsive genes such as pS2 and ESR1 and decreased the protein level of ER${\alpha}$. In order to examine in vivo estrogenic activity of KRG, sixteen female Sprague-Dawley rats separated into four groups were studied for nine weeks: non-ovariectomized (OVX) rats treated with olive oil, OVX rats treated with olive oil, OVX rats treated with 17-${\beta}$-estradiol (E2) in olive oil, and OVX rats treated with KRG extract in olive oil. The experiments were repeated for three times and the data of twelve rats were combined. Body weight of OVX rats was greater than that of sham-operated control rats and was decreased by E2 treatment. Uterine weight increased after E2 treatment compared to OVX rats. However, no difference in body or uterine weight was observed with KRG intake. KRG induced reductions in total cholesterol, low density lipoprotein cholesterol/total cholesterol, high density lipoprotein cholesterol/total cholesterol, and low density lipoprotein cholesterol/high density lipoprotein cholesterol, but not to the same degree as did E2 intake. These results show that KRG does contain estrogenic activity as manifested by in vitro study but the activity is not strong enough to elicit physiological responses.