• Title/Summary/Keyword: redox condition.

Search Result 122, Processing Time 0.027 seconds

Heavy Metal Contamination and Spatial Differences in Redox Condition of the Artificial Shihwa lake, Korea (시화호의 중금속 오염과 산화-환원 상태의 공간적 차이)

  • Hyeon, Sang-Min;Kim, Eun-Su;Paeng, U-Hyeon
    • Journal of Environmental Science International
    • /
    • v.13 no.5
    • /
    • pp.479-488
    • /
    • 2004
  • Five sediment cores from the tidal flat of artificial Lake Shihwa are analyzed in terms of sedimentology and geochemistry to evaluate the heavy metal contamination and redox condition of surficial sediment following the Shihwa seawall construction. The variability of concentrations of various elements depends on the depositional environment, and reflects the various redox conditions and sediment provenances. The amounts of Ti and Al and their ratio of Ti/ Al with respect to Li clearly indicate that there is an anthropogenic contribution to the surficial sediment. The high concentrations of heavy metals suggest an anthropogenic contribution at ST. 34 and ST. 22. Concentrations of most elements (Cr, Cu, Zn and Pb) are higher near the Shihwa-Banwol industrial complex than in the central part of Lake Shihwa. Concentrations of heavy metal in surficial sediment near the Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa. Enrichment factors (EF), which are normalized by the unpolluted shale, suggests a significant metallic contamination near the Shihwa-Banwol industrial complex (SBIC). The redox condition is divided into two anoxic and mixed oxi $c_oxic zones based on the carbon:sulfur (C/S) ratios of organic matter and elemental relationships. Correlations among geochemical elements Mn, U and Mo are significantly different from site to site, and may therefore be an indicator of the spatial redox condition. Controlling factors for switching anoxic/oxic conditions are thought to be water depth and the differences in industrial effluent supply. The variations of the Cu/Mn ratio in the sediments confirms above mentioned spatial differences of a redox condition in part, and therefore shows a location-dependence redox condition in sediments at four other sites. The redox condition of the surficial sediment characteristics of the Shihwa Lake are controlled by its geographic location and water depth.th.

Hydrogeochemistry of shallow groundwater in a small catchment area, Cheonan, Korea: Emphasis on redox condition and nitrate problem

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Gi-Tak;Park, Byoung-Young;Kim, Kangjoo;Lee, Chul-Woo;Kim, Hyoung-Soo
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.99-102
    • /
    • 2003
  • Shallow groundwater systems are highly vulnerable to anthropogenic contamination and are characterized by a variety of redox condition. The redox state is a key parameter to control the nitrate contamination which is related to nitrification or denitrification processes. In relation to the control of nitrate problem, it is very important to understand the source, transport and fate of nitrogen compounds in a groundwater system. (omitted)

  • PDF

The Effect of Redox Potential on the Kinetics of Lysine Production by Corynebacterium glutamicum (Corynebacterium glutamicum에 의한 Lysine 생산에 있어서 산화환원 전위가 발효속도론적 특성에 미치는 영향)

  • 이진희;김성준;이재흥
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.76-81
    • /
    • 1991
  • - The effect of redox potential (ORP) on lysine production by a leucine auxotrophic regulatory mutant of Corynebacterium glutclmicum on molasses medium was investigated in a 2-1 jar fermentor at pH 6.9 and $32^{\circ}C$. At a dilution rate of D=O.l $h ^1$, a maximum yield of Yr,,s=0.24 was obtained in either carbon- or leucine-limited chemostat where the redox potential was between -60 mV and - 100 mV. This level of redox potential corresponded to moderate oxygen deficiency. Under a high oxygen deficient condition of the redox potential of - 130 rnV (oxygen-limited chemostat), all the kinetic parameters such as $Y_[p/s}, q_s\; and \; q_p$ were decreased significantly and significant amounts of byproducts including glycine, alanine and valine were accumulated in the culture, indicating that the control of redox potential is important in lysine fermentation. At the redox potential of - 40 mV, on the other hand, large quantities of arginine (up to 0.38g/l) and glutamic acid (up to 0.12 g/l) were produced. A maximum lysine productivity of 2.41 g/l/h was achieved at - 66 mV under a carbon-limited condition.

  • PDF

Dyeing of Cellulose Fabric with C. I. Direct Blue 15 by Redox System (직접 염료 Direct Sky Blue 5B(C. I. Direct Blue 15)의 면에 대한 레독스계에서의 염색)

  • 김광오;김정구;이영희;김경환
    • Textile Coloration and Finishing
    • /
    • v.5 no.3
    • /
    • pp.173-181
    • /
    • 1993
  • Dyeing cotton fabric with direct dye (C. I. Direct Blue 15) by redox sytem of ammonium persulfate as an oxidant and glucose as reductant was studied. It was found that covalent bond between dye and cellulose molecule can be formed by free radical produced by the redox system in the dye bath, which enhanced significantly the color strength. The retained color strength after DMF extraction was much better in the presence than in the absence of the redox sytem. The optimum dyeing condition was 0.028 mol/$\ell$(APS/Glucose each) of redox concentration, 65$^{\circle}C$ of dyeing temperature and 60min of dyeing time. The color variation on the dyed sample had not been observed as a result of fixed ${\lambda}_max$.

  • PDF

Thioredoxin-Mediated Regulation of Protein Synthesis by Redox in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 산화환원에 의한 In Vitro 단백질합성의 Thioredoxin에 중재된 조절)

  • Choi, Sang-Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.36-40
    • /
    • 2007
  • Redox signaling is one of way to regulate growth and death of cell in response to change of redox of proteins. To search whether translation is regulated by redox, we attempted in vitro translation assay under condition with or without DTT. Interestingly in vitro translation activity was increased up to 40% In the presence of dithiothreitol (DTT). Then we checked whether this positive effect by DTT was further accelerated by addition of thioredoxin (Trx). When a Trx purified from Saccharomyces cerevisiae was added to the in vitro translation extract, we observed a dose-dependent increase in translational activity. These results suggest the possibility of translation factors being redox-regulated via Trx in vivo.

Essential Cysteine Residues of Yeast Thioredoxin 2 for an electron donor to Thioredoxin Peroxidases

  • Lee, Song-Mi;Kim, Kang-Hwa;Choi, Won-Ki
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.139-143
    • /
    • 2001
  • Thioredoxin (Trx) is a redox protein possessing conserved sequence Cys-Gly-Pro-Cys in ail organisms. Trx acts as an electron donor of many proteins including thioredoxin peroxidase (TPx). Yeast Trx 2 has two redox active cysteine residues at positions 31 and 34. To investigate the redox activity of each cysteine, we generated mutants C31S, C34S, and C31S/C34S using site directed mutagenesis and examined the redox activity of Trx variants as an electron donor for yeast TPx enzymes. None of the three Cysmutated Trx proteins was active as a redox protein in the 5', 5'-dithiobis-(2-dinitrobenzoic acid) reduction under the condition of the presence of NADPH and thioredoxin reductase, and in the thioredoxin dependent peroxidase activity of yeast TPx II. C34S enhanced the glutamine synthetase protection activity of yeast TPx I, even though 100 times more protein was needed to exhibit the same activity to WT. The formation of a mixed disulfide intermediate between Trx and TPx II subunits was analyzed by SDS-PAGE. The mixed dieter form of TPx II was found only for C34S. These results suggest that Cys-31 more effectively acts as an electron donor for TPx enzymes.

  • PDF

Glycation-induced Inactivation of Antioxidant Enzymes and Modulation of Cellular Redox Status in Lens Cells

  • Shin, Ai-Hyang;Oh, Chang-Joo;Park, Jeen-Woo
    • Archives of Pharmacal Research
    • /
    • v.29 no.7
    • /
    • pp.577-581
    • /
    • 2006
  • Oxidative mechanisms are thought to have a major role in cataract formation and diabetic complications. Antioxidant enzymes play an essential role in the antioxidant system of the cells that work to maintain low steady-state concentrations of the reactive oxygen species. When HLE-B3 cells, a human lens cell line were exposed to 50-100 mM glucose for 3 days, decrease of viability, inactivation of antioxidant enzymes, and modulation of cellular redox status were observed. Significant increase of cellular oxidative damage reflected by lipid peroxidation and DNA damage were also found. The glycation-mediated inactivation of antioxidant enzymes may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition and may contribute to various pathologies associated with the long term complications of diabetes.

Cloning of the Large Subunit of Replication Protein A (RPA) from Yeast Saccharomyces cerevisiae and Its DNA Binding Activity through Redox Potential

  • Jeong, Haeng-Soon;Jeong, In-Chel;Kim, Andre;Kang, Shin-Won;Kang, Ho-Sung;Kim, Yung-Jin;Lee, Suk-Hee;Park, Jang-Su
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.194-198
    • /
    • 2002
  • Eukaryotic replication protein A (RPA) is a single-stranded(ss) DNA binding protein with multiple functions in DNA replication, repair, and genetic recombination. The 70-kDa subunit of eukaryotic RPA contains a conserved four cysteine-type zinc-finger motif that has been implicated in the regulation of DNA replication and repair. Recently, we described a novel function for the zinc-finger motif in the regulation of human RPA's ssDNA binding activity through reduction-oxidation (redox). Here, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its RPA32 and/or RPA14 subunits. Yeast RPA requires a reducing agent, such as dithiothreitol (DTT), for its ssDNA binding activity. Also, under non-reducing conditions, its DNA binding activity decreases 20 fold. In contrast, the RPA 70 subunit does not require DTT for its DNA binding activity and is not affected by the redox condition. These results suggest that all three subunits are required for the regulation of RPA's DNA binding activity through redox potential.

Variation of Phosphorus Concentration and Redox Potential in a Paddy Field Plot During Growing Season (영농기 필지논에서의 인 (P) 농도와 산화환원전위 (Eh)의 변화 특성)

  • Kim, Young-Hyeon;Kim, Jin-Soo;Jang, Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.47-52
    • /
    • 2010
  • The purpose of this study is to investigate characteristics of total phosphorus (TP) and phosphate phosphorous ($PO_4$-P) concentrations in ponded water and redox potential (Eh) in paddy soil during the growing season. The TP and $PO_4$-P concentrations showed twice peak values after basal dressing and tillering fertilization. The ratio of $PO_4$-P to TP showed low values (0.07~0.18), indicating that most of phosphorus is particlulate. The $PO_4$-P concentrations significantly decreased with dissolved oxygen (DO) concentrations. The Eh showed high values (179~636 mV) under non-ponded aerobic condition, but low values (74~112 mV) under ponded anaerobic condition The TP and $PO_4$-P concentrations in ponded water increased shortly after tillering fertilization even if phosphorus was not applied. This may be due to the release of dissolved phosphorus from the bottom sediment and its associated algal and water flea blooms under anaerobic condition. Therefore, proper water management should be needed shortly after tillering fertilization.

천안.원주 불량매립지의 침출수 저감연구

  • Lee Jin-Yong;Yun Hui-Seong;Lee Seong-Sun;Cheon Jeong-Yong;Gwon Hyeong-Pyo;Kim Jong-Ho;Kim Chang-Gyun;Park Jeong-Gu
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.398-401
    • /
    • 2006
  • Two landfills of this study containing municipal wastes without any bottom liner and leachate treatment system have different landfill age, waste volume and most importantly different hydrogeologic settings. The one (Cheonan) is situated in an open flat area while the other (Wonju) is located in a valley. In the interior of the landfills, typical anaerobic conditions revealed by low DO and ${NO_3}^-$ concentrations, negative ORP values, high $NH_3$, alkalinity and $Cl^-$ concentrations were observed. Generally higher levels of contaminants were detected in the dry season while those were greatly lowered in the wet season. Significantly large decrease of Cl concentration in the wet season indicates that the dilution or mixing is one of dominant attenuation mechanisms of leachate. But detailed variation behaviors in the two landfills are largely different and they were most dependent on permeability of surface and subsurface layers. The intermediately permeable surface of 1.he landfills receives part of direct rainfall infiltration but most rainwater is lost to fast runoff. The practically impermeable surface of clayey silt (paddy field) at immediately adjacent to the Cheonan landfill boundary prevented direct rainwater infiltration and hence redox condition of the groundwaters were largely affected by that of the upper landfill and the less permeable materials beneath the paddy fields prohibited dispersion of the landfill leachate into downgradient area. In the Wonju landfill, there exist three different permeability divisions, the landfill region, the sandy open field and the paddy field. Roles of the landfill and paddy regions are very similar to those at the Cheonan. The very permeable sandy field receiving a large amount of rainwater infiltration plays a key role in controlling redox condition of the downgradient area and contaminant migration.

  • PDF