• 제목/요약/키워드: redox condition.

검색결과 122건 처리시간 0.025초

시화호의 중금속 오염과 산화-환원 상태의 공간적 차이 (Heavy Metal Contamination and Spatial Differences in Redox Condition of the Artificial Shihwa lake, Korea)

  • 현상민;김은수;팽우현
    • 한국환경과학회지
    • /
    • 제13권5호
    • /
    • pp.479-488
    • /
    • 2004
  • Five sediment cores from the tidal flat of artificial Lake Shihwa are analyzed in terms of sedimentology and geochemistry to evaluate the heavy metal contamination and redox condition of surficial sediment following the Shihwa seawall construction. The variability of concentrations of various elements depends on the depositional environment, and reflects the various redox conditions and sediment provenances. The amounts of Ti and Al and their ratio of Ti/ Al with respect to Li clearly indicate that there is an anthropogenic contribution to the surficial sediment. The high concentrations of heavy metals suggest an anthropogenic contribution at ST. 34 and ST. 22. Concentrations of most elements (Cr, Cu, Zn and Pb) are higher near the Shihwa-Banwol industrial complex than in the central part of Lake Shihwa. Concentrations of heavy metal in surficial sediment near the Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa. Enrichment factors (EF), which are normalized by the unpolluted shale, suggests a significant metallic contamination near the Shihwa-Banwol industrial complex (SBIC). The redox condition is divided into two anoxic and mixed oxi $c_oxic zones based on the carbon:sulfur (C/S) ratios of organic matter and elemental relationships. Correlations among geochemical elements Mn, U and Mo are significantly different from site to site, and may therefore be an indicator of the spatial redox condition. Controlling factors for switching anoxic/oxic conditions are thought to be water depth and the differences in industrial effluent supply. The variations of the Cu/Mn ratio in the sediments confirms above mentioned spatial differences of a redox condition in part, and therefore shows a location-dependence redox condition in sediments at four other sites. The redox condition of the surficial sediment characteristics of the Shihwa Lake are controlled by its geographic location and water depth.th.

Hydrogeochemistry of shallow groundwater in a small catchment area, Cheonan, Korea: Emphasis on redox condition and nitrate problem

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Gi-Tak;Park, Byoung-Young;Kim, Kangjoo;Lee, Chul-Woo;Kim, Hyoung-Soo
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.99-102
    • /
    • 2003
  • Shallow groundwater systems are highly vulnerable to anthropogenic contamination and are characterized by a variety of redox condition. The redox state is a key parameter to control the nitrate contamination which is related to nitrification or denitrification processes. In relation to the control of nitrate problem, it is very important to understand the source, transport and fate of nitrogen compounds in a groundwater system. (omitted)

  • PDF

Corynebacterium glutamicum에 의한 Lysine 생산에 있어서 산화환원 전위가 발효속도론적 특성에 미치는 영향 (The Effect of Redox Potential on the Kinetics of Lysine Production by Corynebacterium glutamicum)

  • 이진희;김성준;이재흥
    • 한국미생물·생명공학회지
    • /
    • 제19권1호
    • /
    • pp.76-81
    • /
    • 1991
  • 2l 발효조에서 pH6.9, 온도 $32^{\circ}C$일 때 당밀배지를 이용하여 Corynebacterium glutamicum의 영양요구성 유사체 내성변이주에 의한 라이신 발효시 산화환원 전위 (ORP)가 라이신 발효속도의 특성에 미치는 영향을 조사하였다. 희석률이 0.1$h ^1$일때 탄소원이 제한되건 로이신이 제한되건 산소가 제한되지 않는 한 최대의 대당수율 24를 보였으며, 이 때의 산화환원 전윈 값은 -60mV와 -100mV 범위에 해당하였다. 산화화원 전위 값이 -130mV의 매우 낮은 용존산소 조건하에서는 대당수율 밀 $q_s, q_p$ 등의 발효 반응속도 상수값들이 크게 감소하였으며 glvcine, alanine, valine을 포함하는 발효 부산물의 축적량이 매우 높아졌다.

  • PDF

직접 염료 Direct Sky Blue 5B(C. I. Direct Blue 15)의 면에 대한 레독스계에서의 염색 (Dyeing of Cellulose Fabric with C. I. Direct Blue 15 by Redox System)

  • 김광오;김정구;이영희;김경환
    • 한국염색가공학회지
    • /
    • 제5권3호
    • /
    • pp.173-181
    • /
    • 1993
  • Dyeing cotton fabric with direct dye (C. I. Direct Blue 15) by redox sytem of ammonium persulfate as an oxidant and glucose as reductant was studied. It was found that covalent bond between dye and cellulose molecule can be formed by free radical produced by the redox system in the dye bath, which enhanced significantly the color strength. The retained color strength after DMF extraction was much better in the presence than in the absence of the redox sytem. The optimum dyeing condition was 0.028 mol/$\ell$(APS/Glucose each) of redox concentration, 65$^{\circle}C$ of dyeing temperature and 60min of dyeing time. The color variation on the dyed sample had not been observed as a result of fixed ${\lambda}_max$.

  • PDF

Saccharomyces cerevisiae에서 산화환원에 의한 In Vitro 단백질합성의 Thioredoxin에 중재된 조절 (Thioredoxin-Mediated Regulation of Protein Synthesis by Redox in Saccharomyces cerevisiae)

  • 최상기
    • 한국미생물·생명공학회지
    • /
    • 제35권1호
    • /
    • pp.36-40
    • /
    • 2007
  • Redox signaling은 단백질을 산화환원 시키는 세포의 중요 신호가 전달되어, 그 단백질의 기능이 변화함으로써 세포의 성장 및 사멸을 조절하게 되는 과정이다. 단백질 합성 구성원의 산화, 환원 과정에 의한 단백질 합성 조절을 알아보기 위해 환원제인 DTT 존재 하에 단백질 합성 활성을 관찰한 결과 DTT가 존재하지 않는 것에 비해 단백질합성이 1.4배 정도 증가됨이 관찰되어 redox potential을 보이는 것으로 보아 환원제가 단백질 합성을 좀 더 증진시키는 것으로 사료된다. DTT에 의한 이러한 현상은 산화환원 조절 단백질인 thioredoxin를 첨가한다면 thiol기에 환원력이 전달되어 단백질합성이 더욱 촉진되기 때문에 효모에서 thioredoxin유전자를 cloning하고 이로부터 효모에서 GST-thioredoxin을 분리하였다. DTT 존재 하에 산화환원 조절 단백질인 thioredoxin을 농도별로 첨가하였을 때의 단백질 합성이 어떻게 조절되는지 알아보았다. 반응 액에 DTT를 넣은 것과 넣지 않은 것을 사용하여 thioredoxin을 0ng, 18ng, 90ng, 460ng, 2,300 ng의 농도로 각각 넣어서 반응시켜 보았다. 이렇게 반응시킨 반응물에서 만들어진 단백질 활성을 측정하였는데 thioredoxin의 농도가 높아질수록 그 활성이 높게 나타났으며, thioredoxin을 넣은 것이 넣지 않은 것에 비해 활성이 약 4배 이상 높게 나왔다 이 결과는 산화환원 조절 단백질인 thioredoxin이 환원력을 단백질합성구성원에 효율적으로 전달하는데 관여함을 보여주는 것이며, 산화환원이 단백질 합성 시 중요한 신호전달 과정임을 암시한다.

Essential Cysteine Residues of Yeast Thioredoxin 2 for an electron donor to Thioredoxin Peroxidases

  • Lee, Song-Mi;Kim, Kang-Hwa;Choi, Won-Ki
    • BMB Reports
    • /
    • 제34권2호
    • /
    • pp.139-143
    • /
    • 2001
  • Thioredoxin (Trx) is a redox protein possessing conserved sequence Cys-Gly-Pro-Cys in ail organisms. Trx acts as an electron donor of many proteins including thioredoxin peroxidase (TPx). Yeast Trx 2 has two redox active cysteine residues at positions 31 and 34. To investigate the redox activity of each cysteine, we generated mutants C31S, C34S, and C31S/C34S using site directed mutagenesis and examined the redox activity of Trx variants as an electron donor for yeast TPx enzymes. None of the three Cysmutated Trx proteins was active as a redox protein in the 5', 5'-dithiobis-(2-dinitrobenzoic acid) reduction under the condition of the presence of NADPH and thioredoxin reductase, and in the thioredoxin dependent peroxidase activity of yeast TPx II. C34S enhanced the glutamine synthetase protection activity of yeast TPx I, even though 100 times more protein was needed to exhibit the same activity to WT. The formation of a mixed disulfide intermediate between Trx and TPx II subunits was analyzed by SDS-PAGE. The mixed dieter form of TPx II was found only for C34S. These results suggest that Cys-31 more effectively acts as an electron donor for TPx enzymes.

  • PDF

Glycation-induced Inactivation of Antioxidant Enzymes and Modulation of Cellular Redox Status in Lens Cells

  • Shin, Ai-Hyang;Oh, Chang-Joo;Park, Jeen-Woo
    • Archives of Pharmacal Research
    • /
    • 제29권7호
    • /
    • pp.577-581
    • /
    • 2006
  • Oxidative mechanisms are thought to have a major role in cataract formation and diabetic complications. Antioxidant enzymes play an essential role in the antioxidant system of the cells that work to maintain low steady-state concentrations of the reactive oxygen species. When HLE-B3 cells, a human lens cell line were exposed to 50-100 mM glucose for 3 days, decrease of viability, inactivation of antioxidant enzymes, and modulation of cellular redox status were observed. Significant increase of cellular oxidative damage reflected by lipid peroxidation and DNA damage were also found. The glycation-mediated inactivation of antioxidant enzymes may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition and may contribute to various pathologies associated with the long term complications of diabetes.

Cloning of the Large Subunit of Replication Protein A (RPA) from Yeast Saccharomyces cerevisiae and Its DNA Binding Activity through Redox Potential

  • Jeong, Haeng-Soon;Jeong, In-Chel;Kim, Andre;Kang, Shin-Won;Kang, Ho-Sung;Kim, Yung-Jin;Lee, Suk-Hee;Park, Jang-Su
    • BMB Reports
    • /
    • 제35권2호
    • /
    • pp.194-198
    • /
    • 2002
  • Eukaryotic replication protein A (RPA) is a single-stranded(ss) DNA binding protein with multiple functions in DNA replication, repair, and genetic recombination. The 70-kDa subunit of eukaryotic RPA contains a conserved four cysteine-type zinc-finger motif that has been implicated in the regulation of DNA replication and repair. Recently, we described a novel function for the zinc-finger motif in the regulation of human RPA's ssDNA binding activity through reduction-oxidation (redox). Here, we show that yeast RPA's ssDNA binding activity is regulated by redox potential through its RPA32 and/or RPA14 subunits. Yeast RPA requires a reducing agent, such as dithiothreitol (DTT), for its ssDNA binding activity. Also, under non-reducing conditions, its DNA binding activity decreases 20 fold. In contrast, the RPA 70 subunit does not require DTT for its DNA binding activity and is not affected by the redox condition. These results suggest that all three subunits are required for the regulation of RPA's DNA binding activity through redox potential.

영농기 필지논에서의 인 (P) 농도와 산화환원전위 (Eh)의 변화 특성 (Variation of Phosphorus Concentration and Redox Potential in a Paddy Field Plot During Growing Season)

  • 김영현;김진수;장훈
    • 한국농공학회논문집
    • /
    • 제52권5호
    • /
    • pp.47-52
    • /
    • 2010
  • The purpose of this study is to investigate characteristics of total phosphorus (TP) and phosphate phosphorous ($PO_4$-P) concentrations in ponded water and redox potential (Eh) in paddy soil during the growing season. The TP and $PO_4$-P concentrations showed twice peak values after basal dressing and tillering fertilization. The ratio of $PO_4$-P to TP showed low values (0.07~0.18), indicating that most of phosphorus is particlulate. The $PO_4$-P concentrations significantly decreased with dissolved oxygen (DO) concentrations. The Eh showed high values (179~636 mV) under non-ponded aerobic condition, but low values (74~112 mV) under ponded anaerobic condition The TP and $PO_4$-P concentrations in ponded water increased shortly after tillering fertilization even if phosphorus was not applied. This may be due to the release of dissolved phosphorus from the bottom sediment and its associated algal and water flea blooms under anaerobic condition. Therefore, proper water management should be needed shortly after tillering fertilization.

천안.원주 불량매립지의 침출수 저감연구

  • 이진용;윤희성;이성순;천정용;권형표;김종호;김창균;박정구
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.398-401
    • /
    • 2006
  • Two landfills of this study containing municipal wastes without any bottom liner and leachate treatment system have different landfill age, waste volume and most importantly different hydrogeologic settings. The one (Cheonan) is situated in an open flat area while the other (Wonju) is located in a valley. In the interior of the landfills, typical anaerobic conditions revealed by low DO and ${NO_3}^-$ concentrations, negative ORP values, high $NH_3$, alkalinity and $Cl^-$ concentrations were observed. Generally higher levels of contaminants were detected in the dry season while those were greatly lowered in the wet season. Significantly large decrease of Cl concentration in the wet season indicates that the dilution or mixing is one of dominant attenuation mechanisms of leachate. But detailed variation behaviors in the two landfills are largely different and they were most dependent on permeability of surface and subsurface layers. The intermediately permeable surface of 1.he landfills receives part of direct rainfall infiltration but most rainwater is lost to fast runoff. The practically impermeable surface of clayey silt (paddy field) at immediately adjacent to the Cheonan landfill boundary prevented direct rainwater infiltration and hence redox condition of the groundwaters were largely affected by that of the upper landfill and the less permeable materials beneath the paddy fields prohibited dispersion of the landfill leachate into downgradient area. In the Wonju landfill, there exist three different permeability divisions, the landfill region, the sandy open field and the paddy field. Roles of the landfill and paddy regions are very similar to those at the Cheonan. The very permeable sandy field receiving a large amount of rainwater infiltration plays a key role in controlling redox condition of the downgradient area and contaminant migration.

  • PDF