• Title/Summary/Keyword: redundant multi-valued logic

Search Result 9, Processing Time 0.034 seconds

Design of a High Speed and Low Power CMOS Demultiplexer Using Redundant Multi-Valued Logic (Redundant Multi-Valued Logic을 이용한 고속 및 저전력 CMOS Demultiplexer 설계)

  • Kim, Tae-Sang;Kim, Jeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.148-151
    • /
    • 2005
  • This paper proposes a high speed interface using redundant multi-valued logic for high speed communication ICs. This circuit is composed of encoding circuit that serial binary data are received and converted into parallel redundant multi-valued data, and decoding circuit that convert redundant multi-valued data to parallel binary data. Because of the multi-valued data conversion, this circuit makes it possible to achieve higher operating speeds than that of a conventional binary logic. Using this logic, a 1:4 demultiplexer (DEMUX, serial-parallel converter) IC was designed using a 0.35${\mu}m$ standard CMOS Process. Proposed demultiplexer is achieved an operating speed of 3Gb/s with a supply voltage of 3.3V and with power consumption of 48mW. Designed circuit is limited by maximum operating frequency of process. Therefore, this circuit is to achieve CMOS communication ICs with an operating speed greater than 3Gb/s in submicron process of high of operating frequency.

  • PDF

Design of a 20 Gb/s CMOS Demultiplexer Using Redundant Multi-Valued Logic (중복 다치논리를 이용한 20 Gb/s CMOS 디멀티플렉서 설계)

  • Kim, Jeong-Beom
    • The KIPS Transactions:PartA
    • /
    • v.15A no.3
    • /
    • pp.135-140
    • /
    • 2008
  • This paper describes a high-speed CMOS demultiplexer using redundant multi-valued logic (RMVL). The proposed circuit receives serial binary data and is converted to parallel redundant multi-valued data using RMVL. The converted data are reconverted to parallel binary data. By the redundant multi-valued data conversion, the RMVL makes it possible to achieve higher operating speeds than that of a conventional binary logic. The implemented demultiplexer consists of eight integrators. Each integrator is composed of an accumulator, a window comparator, a decoder and a D flip flop. The demultiplexer is designed with TSMC $0.18{\mu}m$ standard CMOS process. The validity and effectiveness are verified through the HSPICE simulation. The demultiplexer is achieved the maximum data rate of 20 Gb/s and the average power consumption of 95.85 mW.

Design of a 9 Gb/s CMOS Demultiplexer Using Redundant Multi-Valued logic (Redundant 다치논리 (Multi-Valued Logic)를 이용한 9 Gb/s CMOS 디멀티플렉서 설계)

  • Ahn, Sun-Hong;Kim, Jeong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.121-126
    • /
    • 2007
  • This paper describes a 9.09 Gb/s CMOS demultiplexer using redundant multi-valued logic (RMVL). The proposed circuit receives serial binary data and is converted to parallel redundant multi-valued data using RMVL. The converted data are reconverted to parallel binary data. By the redundant multi-valued data conversion, the RMVL makes it possible to achieve higher operating speeds than that of a conventional binary logic. The implemented demultiplexer consists of eight integrators. Each integrator is composed of an accumulator, a window comparator, a decoder and a D flip flop. The demultiplexer is designed with Samsung $0.35{\mu}m$ standard CMOS process. The validity and effectiveness are verified through the post layout simulation. The demultiplexer is achieved the maximum data rate of 9.09 Gb/s and the average power consumption of 69.93 mW. This circuit is expected to operate at higher speed than 9.09 Gb/s in the deep-submicron process of the high operating frequency.

Implementation of CMOS 4.5 Gb/s interface circuit for High Speed Communication (고속 통신용 CMOS 4.5 Gb/s 인터페이스 회로 구현)

  • Kim, Tae-Sang;Kim, Jeong-Beom
    • Journal of IKEEE
    • /
    • v.10 no.2 s.19
    • /
    • pp.128-133
    • /
    • 2006
  • This paper describes a high speed interface circuit using redundant multi-valued logic for high speed communication ICs. This circuit is composed of encoding circuit that serial binary data are received and converted into parallel redundant multi-valued data, and decoding circuit that converts redundant multi-valued data to parallel binary data. Because of the multi-valued data conversion, this circuit makes it possible to achieve higher operating speeds than that of a conventional binary logic. Using this logic, the proposed 1:4 DEMUX (demultiplexer, serial-parallel converter), was designed using a 0.35um standard CMOS technology. Proposed DEMUX is achieved an operating speed of 4.5Gb/s with a supply voltage of 3.3V and with power consumption of 53mW. The operating speed of this circuit is limited by the maximum frequency which the 0.35um process has. Therefore, this circuit is to achieve CMOS communication ICs with an operating speed greater than 10Gb/s in submicron process of high operating frequency.

  • PDF

Implementation of 4.5Gb/s CMOS Demultiplexer Using Redundant Multi-Valued Logic (Redundant Multi-Valued Logic을 이용한 4.5Gb/s CMOS 디멀티플렉서 구현)

  • Kim, Tae-Sang;Kim, Jeong-Beom
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.699-702
    • /
    • 2005
  • This paper describes a high speed interface using redundant multi-valued logic for high speed communication ICs. This circuit is composed of encoding circuit and decoding circuit. Because of the multi-valued data conversion, this circuit makes it possible to achieve higher operating speeds than that of a conventional binary logic. Using this logic, a 1:4 DEMUX (demultiplexer) was designed using a 0.35um standard CMOS technology. Proposed circuit is achieved an operating speed of 4.5Gb/s with a supply voltage of 3.3V and with power consumption of 53mW.

  • PDF

Four-valued Hybrid FFT processor design using current mode CMOS (전류 모드 CMOS를 이용한 4치 Hybrid FFT 연산기 설계)

  • 서명웅;송홍복
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.1
    • /
    • pp.57-66
    • /
    • 2002
  • In this study, Multi-Values Logic processor was designed using the basic circuit of the electric current mode CMOS. First of all, binary FFT(Fast Fourier Transform) was extended and high-speed Multi-Valued Logic processor was constructed using a multi-valued logic circuit. Compared with the existing two-valued FFT, the FFT operation can reduce the number of transistors significantly and show the simplicity of the circuit. Moreover, for the construction of amount was used inside the FFT circuit with the set of redundant numbers like [0,1,2,3]. As a result, the defects in lines were reduced and it turned out to be effective in the aspect of normality an regularity when it was used designing VLSI(Very Large Scale Integration). To multiply FFT, the time and size of the operation was used as LUT(Look Up Table) Finally, for the compatibility with the binary system, multiple-valued hybrid-type FFT processor was proposed and designed using binary-four valued encoder, four-binary valued decoder, and the electric current mode CMOS circuit.

  • PDF

Multiple-valued FFT processor design using current mode CMOS (전류 모드 CMOS를 이용한 다치 FFT 연산기 설계)

  • Song, Hong-Bok;Seo, Myung-Woong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.135-143
    • /
    • 2002
  • In this study, Multi-Values Logic processor was designed using the basic circuit of the electric current mode CMOS. First of all, binary FFT(Fast courier Transform) was extended and high-speed Multi-Valued Logic processor was constructed using a multi valued logic circuit. Compared with the existing two-valued FFT, the FFT operation can reduce the number of transistors significantly and show the simplicity of the circuit. Moreover, for the construction of amount was used inside the FFT circuit with the set of redundant numbers like {0, 1, 2, 3}. As a result, the defects in lines were reduced and it turned out to be effective in the aspect of normality an regularity when it was used designing VLSI(Very Large Scale Integration). To multiply FFT, the time and size of the operation was used toed as LUT(Lood Up Table).

Implementation of PD number representation Multi-input Adder Using Multiple valued Logic (다치 논리를 이용한 PD 수 표현 다 입력 가산기 구현)

  • 양대영;김휘진;송홍복
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.11a
    • /
    • pp.141-145
    • /
    • 1998
  • This paper CMOS full adder design method based on carry-propagation-free addition trees and a circuit technique, so called multiple-valued current-mode (MVCM) circuits. The carry-paopagation-free addition method uses a redundant digit sets called redundant positive-digit number representations. The carry-propagation-free addition is by three steps, and the adder can be designed directly and efficiently from the algorithm using MVCM circuit. We demonstrate the effectiveness of the proposed method through simulation(SPICE).

  • PDF

Implementation of Arithmetic Processor Using Multi-Valued Logic (다치 논리를 이용한 연산기 구현)

  • 양대영;김휘진;박진우;송홍복
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1998.05a
    • /
    • pp.338-341
    • /
    • 1998
  • This paper presents CMOS full adder design method based on carry-propagation-free addition trees and a circuit technique, so called multiple-valued current-nude(MVCM) circuits. The carry-propagation-free addition method uses a redundant digit sets called redundant positive-digit number representations. The carry-propagation-free addition is by three steps, and the adder can be designed directly and efficiently from the algorithm using WVCM circuit, Also Multiplier can be designed by these adder. We demonstrate the effectiveness of the proposed method through simulation(SPICE).

  • PDF