• Title/Summary/Keyword: reflective ratio

Search Result 110, Processing Time 0.039 seconds

A New Reflective Display Mode for Antiferroelectric Liquid Crystal

  • Park, Won-Sang;Kim, Sung-Chul;Lee, Gi-Dong;Yoon, Tae-Hoon;Kim, Jae-Chang
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.48-51
    • /
    • 2000
  • In this work, we proposed a reflective antiferroelectric liquid crystal display (AFLCD) using a half-wave cell whose inplane tilt angle is $22.5^{\circ}$. To check the validity of our design, we fabricated a reflective half-wave AFLC cell of which inplane tilt angle is $24.9^{\circ}$, and measured VIS reflection spectra, contrast ratio and response time. In the results, the half-wave AFLC cell in the reflective configuration exhibits high brightness, high contrast ratio of 20:1, and fast response time of $700{\mu}s$.

  • PDF

Transflective Liquid Crystal Display with a High Aperture Ratio using Electrophoretic Particles for a Switchable Mirror

  • Bae, Kwang-Soo;Kim, Young-Wook;Choi, Gwang-Hei;Heo, Jeong-Uk;Yu, Chang-Jae;Kim, Jae-Hoon
    • Journal of Information Display
    • /
    • v.11 no.3
    • /
    • pp.119-122
    • /
    • 2010
  • This paper proposes a transflective liquid crystal display (LCD) in a whole-pixel switchable configuration with a high aperture ratio using an electrophoretic particle layer (EPL). The switchable transflective LCD consisted of the liquid crystal layer as a display unit, and the EPL as a switchable mirror. The switching of the EPL between the mirror for the reflective mode and the transparency for the transmissive mode was performed by controlling electrophoretic nanoparticles with an applied voltage in a three-electrode structure. The single pixel was used as the whole transmissive or reflective mode that corresponded to the switchable EPL mirror. Thus, a transflective LCD with a high aperture ratio was obtained.

Electro-optic Characteristics of the fringe-field Driven-reflective Liquid Crystal Display with One Polarizer (1매의 편광판으로 구성된 반사형 Fringe-field Switching Mode의 전기 광학 특성)

  • 정태봉;박지혁;이종문;김용배;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.131-137
    • /
    • 2003
  • We have performed computer simulation to obtain electro-optic chracteristics of reflective liquid crystal display (LCD) using wide viewing angle LC mode, fringe field switching(FFS). Unlike other reflective LCD modes, in the FFS mode, the LC director in plance so an application to reflective display consisted of polarizer, LC layer and reflector is possible. when an incident light is 550mm, the optimal cell retardation value is 0.1365${\mu}$m and the efficiency of reflectivity is high over 90% with very little wavelength dispersion. Further, we have studied a new reflective display with polarizer, optical compensation film with half plate, LC plus reflector. The display with optimized cell parameters shows high contrast ratio (CR) over 130 with high light efficiency over 90% at normal direction and the CR greater than 5 exists over 60$^{\circ}$ of polar angle in all directions.

Measurement of Refractive Power by Reflective image on the Negative Spherical Lens ((-) 구면 렌즈 면의 반사상에 의한 굴절력 측정)

  • Choi, Woon-Sang;Kim, Tae-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.417-421
    • /
    • 2004
  • We can see that two images of reflection are observed on the surface of a ophthalmic lens. These are the image reflected from front surface and back surface of lens, respectively. The reflective image shows to be affect by surface refractive power of front and back surface of lens. Total refractive power of lens is calculated by refractive power of front and back surface of lens. Accordingly, the ratio of image on the lens surface is able to measure refractive power of ophthalmic lens without helping of the lensmeter. The ratio of two reflective image measured on the lens surface is compared with the calculated ratio by the power measurement.

  • PDF

Optimum configuration of a reflective LC cell with a diffractive nano-reflector

  • Park, Kyung-Ho;Lee, Gak-Seok;Kim, Jae-Chang;Yoon, Tae-Hoon;Kim, Jin-Hwan;Yu, Jae-Ho;Choi, Hwan-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.614-615
    • /
    • 2009
  • For the high reflectance under the ambient light condition, a highly efficient diffractive reflector has been proposed, based on a micro grating structure.[1] This reflector was designed to show highly concentrated distribution of the reflected light to the normal direction of the reflector under specific incident conditions of the light. In order to apply a diffractive reflector to a reflective liquid crystal display, the coupling between the viewing angle characteristics of a liquid crystal (LC) cell and the reflective distribution of the reflector should be considered. Under the optimum configuration confirmed through the analysis of the coupling between a LC cell and a reflector, a reflective vertical alignment (VA) cell with a diffractive reflector shows contrast ratio and brightness much higher than that with a conventional bumpy reflector.

  • PDF

Reflective Twist Nematic Liquid Crystal Display For High Reflectance.

  • Son, Ock-Soo;Park, Young-Il;Beak, Do-Hyoen;Son, Gon;Suh, Dong-Hea
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.292-294
    • /
    • 2008
  • We have developed new reflective LCD for Mixed twist nematic LC mode with high quality image. We have found out an optimal twist angle of LC and optical film's axis by simulation. Also we measured electro-optic characteristics for new design panel. As a result, high reflectance and wide viewing angle characteristics were achieved.

  • PDF

A reflective color TFT-LCD with high aperture ratio

  • Choi, Su-Seok;Kang, Won-Seok;Jin, Hyun-Suk;Jeong, Woo-Nam
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.215-218
    • /
    • 2003
  • We have developed a reflective 3.5" QVGA color TFT-LCD with high reflection within viewing angle. For this, We have introduced new pixel design and asymmetric reflector. Based on these technical concepts, we get a high aperture ratio of 93.5% and much higher reflection up to 64% with a 3.5" prototype panel.

  • PDF

Electro-optic Characteristics of Reflective Optically Compensated Splay Cell (반사형 Optically Compensated Splay 셀의 전기-광학 특성)

  • 송제훈;오상민;이종문;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.983-987
    • /
    • 2004
  • We have studied electro-optic characteristics of reflective optically compensated splay (R-OCS) cell. The initial configuration of this cell is in splay form such that a mid director lies parallel to the substrate and around it hybrid structure is formed symmetrically so the optically compensation effect exists. Optimized optical configurations could be achieved by using a single polarizer, a quarter-wave film and a cell with quarter-wane retardation. The optimal cell retardation is 0.34 ${\mu}$m, allowing to have large cell gap. The cell provides high contrast ratio of 80:1 at normal direction and the region with contrast ratio over 5:1 covert up to 160$^{\circ}$ horizontally and vertically at all wavelength range.

Impact of Student Assessment Activities on Reflective Thinking in High School Argument-Based Inquiry (고등학교 논의기반 탐구 과학수업에서 학생 평가활동이 반성적 사고에 미치는 영향)

  • Lee, Seonwoo;Nam, Jeonghee
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.2
    • /
    • pp.347-360
    • /
    • 2016
  • This study focused on the use of student assessment activities to investigate the impact on reflective thinking in Argument-based Inquiry. The participants of the study were 166 10th grade students (six classes). Over one semester, students participated in five ABI programs that we developed. The experimental group (84 students) was taught Argument-Based Inquiry with students' self and peer assessment activities. The comparative group (82 students) was taught without the activities. We analyzed students' reflective writing to investigate how the student assessment activities influenced the students' reflective thinking. We also used the interviews and surveys to examine the validity of student assessment activities. According to analysis of the reflective writing, the experimental group had a significantly higher mean score than the comparative group in the 3rd and 5th writing. The ratio of students who showed a metacognitive level of reflection with regard to analysis of inquiry process, understanding of learning, and change of thinking increased in both groups, but the experimental group's ratio was higher than the comparative group's. The result of analysis of the reflective practice showed that the ratio of the experimental group's students who reached the metacognitive level of reflection in their writing increased, while the comparative group's decreased. Therefore, we conclude that student assessment activities can create a learning environment that facilitates student participation, increases the students' engagement in the learning process, and can be used as a tool to scaffold learning.

Simulation for Electro-Optic Characteristics of the Fringe-Field Driven Reflective Hybrid Aligned Nematic Liquid Crystal Display with One Polarizer (1매의 편광판으로 구성된 Fringe-Field 구동형 반사형 Hybrid Aligned Nematic 액정디스플레이의 전기-광학 특성에 관한 시뮬레이션)

  • 박지혁;정태봉;이종문;김용배;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.908-913
    • /
    • 2003
  • We have performed computer simulation to obtain electro-optic characteristics of reflective hybrid aligned nematic liquid crystal displays (LCDs) driven by fringe field. The results show that the optimal retardation value (dΔn) of the cell is 0.289 ${\mu}$m, which allows for the cell to have a practical cell gap of larger than 3 ${\mu}$m when manufacturing. A reflectance of the dark state is only 0.114 % for an incident light 550 nm. At this condition, the light efficiency of white state reaches 92.7 %. The display with optimized cell parameters shows that the contrast ratio greater than 5 exists over 600 of polar angle in all directions and lower driving voltage than that of fringe-field driven homogeneously aligned reflective LCD.