• Title/Summary/Keyword: reflexive property

Search Result 16, Processing Time 0.025 seconds

REFLEXIVE PROPERTY ON IDEMPOTENTS

  • Kwak, Tai Keun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1957-1972
    • /
    • 2013
  • The reflexive property for ideals was introduced by Mason and has important roles in noncommutative ring theory. In this note we study the structure of idempotents satisfying the reflexive property and introduce reflexive-idempotents-property (simply, RIP) as a generalization. It is proved that the RIP can go up to polynomial rings, power series rings, and Dorroh extensions. The structure of non-Abelian RIP rings of minimal order (with or without identity) is completely investigated.

REFLEXIVE PROPERTY SKEWED BY RING ENDOMORPHISMS

  • Kwak, Tai Keun;Lee, Yang;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.217-234
    • /
    • 2014
  • Mason extended the reflexive property for subgroups to right ideals, and examined various connections between these and related concepts. A ring was usually called reflexive if the zero ideal satisfies the reflexive property. We here study this property skewed by ring endomorphisms, introducing the concept of an ${\alpha}$-skew reflexive ring, where is an endomorphism of a given ring.

RINGS WITH REFLEXIVE IDEALS

  • Han, Juncheol;Park, Sangwon
    • East Asian mathematical journal
    • /
    • v.34 no.3
    • /
    • pp.305-316
    • /
    • 2018
  • Let R be a ring with identity. A right ideal ideal I of a ring R is called ref lexive (resp. completely ref lexive) if $aRb{\subseteq}I$ implies that $bRa{\subseteq}I$ (resp. if $ab{\subseteq}I$ implies that $ba{\subseteq}I$) for any $a,\;b{\in}R$. R is called ref lexive (resp. completely ref lexive) if the zero ideal of R is a reflexive ideal (resp. a completely reflexive ideal). Let K(R) (called the ref lexive radical of R) be the intersection of all reflexive ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an reflexive ideal of a ring are obtained; (2) reflexive (resp. completely reflexive) property is Morita invariant; (3) For any ring R, we have $K(M_n(R))=M_n(K(R))$ where $M_n(R)$ is the ring of all n by n matrices over R; (4) For a ring R, we have $K(R)[x]{\subseteq}K(R[x])$; in particular, if R is quasi-Armendaritz, then R is reflexive if and only if R[x] is reflexive.

BANACH-SAKS PROPERTY ON THE DUAL OF SCHLUMPRECHT SPACE

  • Cho, Kyugeun;Lee, Chongsung
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.341-348
    • /
    • 1998
  • In this paper, we show that Schlumprecht space is reflexive and the Dual of Schlumprecht space has the Banach-Saks property and study behavior of block basic sequence in Schlumprecht space.

  • PDF

BANACH SPACE WITH PROPERTY (β) WHICH CANNOT BE RENORMED TO BE B-CONVEX

  • Cho, Kyugeun;Lee, Chongsung
    • Korean Journal of Mathematics
    • /
    • v.14 no.2
    • /
    • pp.161-168
    • /
    • 2006
  • In this paper, we study property (${\beta}$) and B-convexity in reflexive Banach spaces. It is shown that k-uniform convexity implies B-convexity and property (${\beta}$). We also show that there is a Banach space with property (${\beta}$) which cannot be equivalently renormed to be B-convex.

  • PDF

Remarks on Fixed Point Theorems of Non-Lipschitzian Self-mappings

  • Kim, Tae-Hwa;Jeon, Byung-Ik
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.433-443
    • /
    • 2005
  • In 1994, Lim-Xu asked whether the Maluta's constant D(X) < 1 implies the fixed point property for asymptotically nonexpansive mappings and gave a partial solution for this question under an additional assumption for T, i.e., weakly asymptotic regularity of T. In this paper, we shall prove that the result due to Lim-Xu is also satisfied for more general non-Lipschitzian mappings in reflexive Banach spaces with weak uniform normal structure. Some applications of this result are also added.

  • PDF

Operators in L(X,Y) in which K(X,Y) is a semi M-ideal

  • Cho, Chong-Man
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.257-264
    • /
    • 1992
  • Since Alfsen and Effors [1] introduced the notion of an M-ideal, many authors [3,6,9,12] have worked on the problem of finding those Banach spaces X and Y for which K(X,Y), the space of all compact linear operators from X to Y, is an M-ideal in L(X,Y), the space of all bounded linear operators from X to Y. The M-ideal property of K(X,Y) in L(X,Y) gives some informations on X,Y and K(X,Y). If K(X) (=K(X,X)) is an M-ideal in L(X) (=L(X,X)), then X has the metric compact approximation property [5] and X is an M-ideal in $X^{**}$ [10]. If X is reflexive and K(X) is an M-ideal in L(X), then K(X)$^{**}$ is isometrically isomorphic to L(X)[5]. A weaker notion is a semi M-ideal. Studies on Banach spaces X and Y for which K(X,Y) is a semi M-ideal in L(X,Y) were done by Lima [9, 10].

  • PDF

RINGS IN WHICH EVERY SEMICENTRAL IDEMPOTENT IS CENTRAL

  • Muhammad Saad
    • Korean Journal of Mathematics
    • /
    • v.31 no.4
    • /
    • pp.405-417
    • /
    • 2023
  • The RIP of rings was introduced by Kwak and Lee as a generalization of the one-sided idempotent-reflexivity property. In this study, we focus on rings in which all one-sided semicentral idempotents are central, and we refer to them as quasi-Abelian rings, extending the concept introduced by RIP. We establish that quasi-Abelianity extends to various types of rings, including polynomial rings, power series rings, Laurent series rings, matrices, and certain subrings of triangular matrix rings. Furthermore, we provide comprehensive proofs for several results that hold for RIP and are also satisfied by the quasi-Abelian property. Additionally, we investigate the structural properties of minimal non-Abelian quasi-Abelian rings.