• Title/Summary/Keyword: refractive index dispersion

Search Result 60, Processing Time 0.035 seconds

Refractive Index Dispersion of Aluminate Glasses on the Addition of $SiO_2$ ($SiO_2$ 첨가에 따른 알루미네이트 유리의 굴절률 분산 특성)

  • 원종원;정용선;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.693-698
    • /
    • 1997
  • The refractive index and dispersion in the (100-x)(0.6CaO.0.4Al2O3).xSiO2(x=0~30) glasses were investigated. As the amount of SiO2 increased, the refractive index decreased. The change of refractive index was attributed to the change of the molar refraction rather than the molar volume. When the amount of SiO2 was smaller than 20 mol%, the average electronic transition energy gaps(E0) and the electronic oscillator strengths(Ed) were about 10.9($\pm$0.1) nd 18($\pm$0.5)eV, respectively. However E0 and Ed of the glass (CAS30) with 30 mol% SiO2 increased to 12.63 and 19.89eV, respectively. The similar results was observed in the variation of Abbe Number. Abbe number of the glass in the range of 0~20 mol% SiO2 was about 46 and that of CAS30 increased to 60. The zero-material dispersion wavelength({{{{ lambda }}0) of pure calcium aluminate glass was 1.8 ${\mu}{\textrm}{m}$. As the amount of SiO2 increased, the zero-material dispersion wavelength shifted to a shorter wavelength. {{{{ lambda }}0 of CAS30 was 1.5 ${\mu}{\textrm}{m}$, that is currently using for the optical telecommunication system.

  • PDF

Optical Constants and Dispersion Parameters of CdS Thin Film Prepared by Chemical Bath Deposition

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.196-199
    • /
    • 2012
  • CdS thin film was prepared on glass substrate by chemical bath deposition in an alkaline solution. The optical properties of CdS thin film were investigated using spectroscopic ellipsometry. The real (${\varepsilon}_1$) and imaginary (${\varepsilon}_2$) parts of the complex dielectric function ${\varepsilon}(E)={\varepsilon}_1(E)+i{\varepsilon}_2(E)$, the refractive index n(E), and the extinction coefficient k(E) of CdS thin film were obtained from spectroscopic ellipsometry. The normal-incidence reflectivity R(E) and absorption coefficient ${\alpha}(E)$ of CdS thin film were obtained using the refractive index and extinction coefficient. The critical points $E_0$ and $E_1$ of CdS thin film were shown in spectra of the dielectric function and optical constants of refractive index, extinction coefficient, normal-incidence reflectivity, and absorption coefficient. The dispersion of refractive index was analyzed by the Wemple-DiDomenico single-oscillator model.

Refractive Index Dispersion of Sputter-Deposited Silicon-Rich Silica Thin Films (스퍼터링 방법으로 증착된 실리콘 과잉 실리카 박막의 굴절률 분산)

  • Jin, Byeong-Kyou;Choi, Yong-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.10-15
    • /
    • 2009
  • We have fabricated silicon-rich silica thin films via RF magnetron sputtering using a SiO target. Thickness evolution and microstructure change of such $SiO_x$ (1$SiO_x$ thin films turned out to be mainly responsible for the increase of refractive index.

Change of Dispersibility and Refractive Index of Zirconia Suspension Depending on Alkali Treatment Time (염기처리시간에 따른 지르코니아 현탁액의 분산성과 굴절율 변화)

  • Jo, Choong Hee;Ham, Dong Seok;Lee, Jae Heung;Ryu, Juwhan;Lee, Kee-Yoon;Cho, Seong Keun
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Zirconia nanoparticles were widely used as filler in order to get high refractive index layer. However, dispersion of nanoparticles is difficult due to their agglomeration in solvent. In this study, the dispersibility of the zirconia suspension is promoted by controlling the steric hindrance and electrostatic interactions through the adsorption of PEI according to alkali treatment time. Also, to induce improved dispersibility on suspension, we changed the dispersion conditions variously and fabricated an ink formulation method for the coating layer. Zirconia suspension was characterized by dynamic light scattering (DLS), Zeta potential measurement, Transmission Electron Microscope (TEM) and FT-IR. We were able to confirm that good dispersion of zirconia suspension by alkali treatment and PEI led to high refractive index.

DFT Calculations on the Wavelength Dispersion of Absorbance and Refractive Indices for Molecular Design of Photonic Polymers

  • Ando, Shinji
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.230-230
    • /
    • 2006
  • Density functional theory (DFT) calculations using the B3LYP hybrid functional and the 6-311++G(d,p) basis set have been performed to predict the wavelength dispersion of optical absorbance and refractive indices for organic compounds and polymers in the range between the vacuum UV (${\sim}157\;nm$) and near-IR (${\sim}850\;nm$). The DFT calculations can reproduce the experimental dispersions of absorbance and refractive indices with high accuracy and low costs. The calculated dispersions demonstrate that the judicious introductions of $-F\;and\;-CF_{3}$ into alicyclic and heterocyclic compounds are effective in reducing the absorption at shorter wavelengths. In addition, the calculated Abbe numbers that represent the refractive index dispersion in the visble region are linearly proportional to the calculated refractive indices at 589 nm.

  • PDF

Analysis and Measurement of Effective Refractive Indices with Ion-exchanged Slab Waveguide (이온교환 평판도파로의 실효굴절율 측정 및 해석)

  • 천석표;박정일;박태성;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.73-76
    • /
    • 1995
  • In this study, the slab waveguide was fabricated using potassium-nitride(KNO$_3$) or silver-nitride (AgNO$_3$) molten sources by ion-exchange process. The effective refractive indices of waveguide were measured by Prism-Coupling method. and The characteristics of waveguide(mode dispersion, effective diffusion depth. surface refractive index, diffusion coefficient, and refractive index profile etc,) were investigated by WKB method, In the case of potassium ion-exchange, the computer calculation showed that the refractive index profile of waveguide followed Gaussian function, the surface refractive index increased with ion-exchange time and the effective diffusion depth increased a little as ion-exchange time increased, while the surface refractive index of silver ion-exchanged waveguide decreased with ion-exchange time because of the ion depletion on the surface of waveguide, and the effective diffusion depth seriously with ion-exchange tim. Double ion-exchanged waveguide was fabricated by performing silver ion-exchange after potassium ion-exchange. Double ion-exchanged waveguide had a tight mode binding force since the surface refractive index was larger than single step ion-exchanged waveguide.

  • PDF

Application of the modified fast fourier transformation weighted with refractive index dispersion far an accurate determination of film thickness (굴절률 분산을 반영한 고속 푸리에 변환 및 막두께 정밀결정)

  • 김상준;김상열
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.266-271
    • /
    • 2003
  • The reflectance spectrum of optical films thicker than a few microns shows an intensity oscillation due to interference. Since the spectral period of the oscillation is inversely related to film thickness, the thickness of an optical film can be determined from the spectral frequency of the oscillation. For rapid data processing, the spectral frequency is obtained by use of a Fast Fourier Transformation technique. The conventional method of applying a Fast Fourier Transformation to the reflectance spectrum versus photon energy is modified so as to clear the ambiguity in choosing the proper effective refractive index value and to prevent the broadening of the Fourier transformed peak due to the refractive index dispersion. This technique of modified Fast Fourier Transformation is suggested by the authors for the first time to their knowledge. From the analysis of the calculated reflectance spectrum of a 30-${\mu}{\textrm}{m}$-thick dielectric film. it is shown to improve the accuracy in determining film thickness by a great amount. The improved accuracy of the modified Fast Fourier Transformation is also confirmed from the analysis of the reflectance spectra of a sample with 80-${\mu}{\textrm}{m}$-thick cover layer and 13-${\mu}{\textrm}{m}$-thick spacer layer on a PC substrate.

A Study on the Minimum Diepersion Characterlation of Step Index Single Mode Optial Pibers (스텝인덱스 단일모드 광섬유의 최소분산 특성에 관한 연구)

  • 김원준;장대석;이상설
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1987.04a
    • /
    • pp.180-183
    • /
    • 1987
  • In this paper mimimm desperaioms of atep index single mode sptical fibers manufzctrured by the phase madulatiem method.From them we find that the caloulated data agree closely with the resulte measured at the wavelength around 1.3 um and that a method to shift sere dispersion wavelength at the wavelenghth around 1.55 um is to control refractive index profile and relative refractive difference

  • PDF

Complex refractive index of PECVD grown DLC thin films and density variation versus growth condition (PECVD 방법으로 성장시킨 DLC 박막의 복소굴절율 및 성장조건에 따른 박막상수 변화)

  • 김상준;방현용;김상열;김성화;이상현;김성영
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.277-282
    • /
    • 1997
  • The complex refractive index of Diamond-like Carbon (DLC) thin films, which can be applied to optical devices or electrical devices, have been determined using optical methods. DLC thin films are grown on Si(100) substrates and vitreous silica substrates respectively, using the technique of plasma enhanced chemical vapor deposition (PECVD). The spectroscopic ellipsometry data($\psi$, $\Delta$) and the transmission spectra of these DLC films are obtained. These optical spectra are analyzed with the help of the Sellmeier dipersion relation and a quantum mechanically derived dispersion relation. Using spectroscopic ellipsometry data at their transparent region, the refractive index and the effective thickness of DLC films on vitreous silica are model calculated, Then the transmission spectra are inverted to yield the extinction coefficient spectra k(λ) at absorbing region. These spectra are fit to the quantum mechanical dispersion relation and the best fit dispersion constants are determined. The complex refractive indices are easily calculated with these constants. The spectroscopic ellipsometry data at the absorbing region in model calculated to give the packing densities and the degrees of surface microroughness of DLC films. Discussions are made in correlation with the growth condition of DLC films.

  • PDF

Measurement of Optical Properties of a Liquid Based on a Side-polished Optical Fiber (측면 연마 광섬유를 이용한 용액의 광학 특성 측정)

  • Lee, Hyeon Jin;Kim, Kwang Taek
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.195-198
    • /
    • 2014
  • In this paper, a measurement method to obtain the optical properties of a liquid base on a side-polished single mode fiber was proposed and demonstrated. The device showed periodic resonance coupling against wavelengths. The refractive index and dispersion characteristics of a liquid were calculated by use of the spacings of periodic resonance wavelengths of the device. The thermo-optic coefficient of the liquid was obtained by monitering the shift of resonance wavelengths of the devices with change of environmental temperature.