• Title/Summary/Keyword: regular grid structure

Search Result 24, Processing Time 0.024 seconds

An Algorithm for Addressing in Microarray using Regular Grid Structure Searching (균일 격자 구조 탐색을 이용한 마이크로어레이 주소 결정 알고리즘)

  • 진희정;조환규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.955-957
    • /
    • 2004
  • DNA 마이크로어레이(microarray)란 새로운 개념의 기술이 도입되면서, 이를 이용하여 유전체(genome)를 탐색하거나, 동시에 수천 개의 유전자간의 상호작용을 관찰 할 수 있게 되었다. 이러한 이점으로 인하여, 많은 DNA 마이크로어레이 실험이 시행되고 있다. DNA 마이크로어레이 실험으로 생성되는 이미지 데이터는 그 양이 방대하고, 분석하는 연구자에 따라 판정이 달라질 수 있으므로, 이를 효율적으로 분석할 수 있는 방법들이 필요하게 되었다. 하지만, 마이크로어레이 이미지 데이터는 반점(Spot) 위치의 변동이나 반점의 모양, 크기가 고르지 않는 것과 칼은 다양한 문제로 인하여 자동적으로 분석하기는 어렵다. 본 논문에서는 마이크로어레이의 균일 격자(regular grid) 구조 탐색을 이용하여 새로운 주소 결정 알고리즘을 소개한다.

  • PDF

Numerical Simulation on the Greenwater Impact Load of Offshore Structure in Regular Waves (규칙파 중 해양구조물의 갑판침입수 충격하중에 관한 수치시뮬레이션)

  • Kang, Ui-Ha;Lee, Young-Gill;Yang, In-Jun;Kim, Ki-Yong;Joo, Young-Seok;Park, Jeong-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.492-500
    • /
    • 2017
  • In the study, numerical simulation on the greenwater impact load of free surface offshore structure in the regular waves using fixed cartesian grid system and Modified Marker-Density (MMD) method were carried out and the results were reviewed. In order to compare numerical simulation and experimental results, the FPSO with the scale ratio of 1/100 model ship with fixed rectangular deck was selected and turbulence characteristic of the flow was considered by applying the Sub-Grid Scale (SGS) in laminar flow. As a result, it is reviewed how the greenwater impact load inflowed from bow in regular headsea wave influence the flow on the deck and the flow characteristic by numerical simulation and the experiment results were compared and reviewed. Based on this study, it would be useful to numerically study the effect of greenwater on offshore structure.

An Algorithm for Spot Addressing in Microarray using Regular Grid Structure Searching (균일 격자 구조 탐색을 이용한 마이크로어레이 반점 주소 결정 알고리즘)

  • 진희정;조환규
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.9
    • /
    • pp.514-526
    • /
    • 2004
  • Microarray is a new technique for gene expression experiment, which has gained biologist's attention for recent years. This technology enables us to obtain hundreds and thousands of expression of gene or genotype at once using microarray Since it requires manual work to analyze patterns of gene expression, we want to develop an effective and automated tools to analyze microarray image. However it is difficult to analyze DNA chip images automatically due to several problems such as the variation of spot position, the irregularity of spot shape and size, and sample contamination. Especially, one of the most difficult problems in microarray analysis is the block and spot addressing, which is performed by manual or semi automated work in all the commercial tools. In this paper we propose a new algorithm to address the position of spot and block using a new concept of regular structure grid searching. In our algorithm, first we construct maximal I-regular sequences from the set of input points. Secondly we calculate the rotational angle and unit distance. Finally, we construct I-regularity graph by allowing pseudo points and then we compute the spot/block address using this graph. Experiment results showed that our algorithm is highly robust and reliable. Supplement information is available on http://jade.cs.pusan.ac.kr/~autogrid.

The Construction of Digital Terrain Models by a Triangulated Irregular Network (비정규삼각망 데이타구조에 의한 수치지형모델의 구성)

  • 이석찬;조규전;이창경;최병길
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 1990
  • A regular grid or a triangulated irregular network is generally used as the data structure of digital terrain models. A Regular grid is simple and easy to manipulate, but it can't describe well terrain surface features and requires vast volumes of data. In the meantime, a triangulated irregular network has complex data structure, but it can describe well terrain surface features and can achieve the accuracy suitable to its application with relatively little data. This paper aims at the construction of efficient digital terrain models by the improvment of a triangulated irregular network based on Delaunay triangulation. Regular and irregular data set are sampled from existing contour maps, and the efficiency and the accuracy of the two data structures are compared.

  • PDF

CFD simulation of vortex-induced vibration of free-standing hybrid riser

  • Cao, Yi;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.195-223
    • /
    • 2017
  • This paper presents 3D numerical simulations of a Free Standing Hybrid Riser under Vortex Induced Vibration, with prescribed motion on the top to replace the motion of the buoyancy can. The model is calculated using a fully implicit discretization scheme. The flow field around the riser is computed by solving the Navier-Stokes equations numerically. The fluid domain is discretized using the overset grid approach. Grid points in near-wall regions of riser are of high resolution, while far field flow is in relatively coarse grid. Fluid-structure interaction is accomplished by communication between fluid solver and riser motion solver. Simulation is based on previous experimental data. Two cases are studied with different current speeds, where the motion of the buoyancy can is approximated to a 'banana' shape. A fully three-dimensional CFD approach for VIV simulation for a top side moving Riser has been presented. This paper also presents a simulation of a riser connected to a platform under harmonic regular waves.

Mechanical robustness of AREVA NP's GAIA fuel design under seismic and LOCA excitations

  • Painter, Brian;Matthews, Brett;Louf, Pierre-Henri;Lebail, Herve;Marx, Veit
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.292-296
    • /
    • 2018
  • Recent events in the nuclear industry have resulted in a movement towards increased seismic and LOCA excitations and requirements that challenge current fuel designs. AREVA NP's GAIA fuel design introduces unique and robust characteristics to resist the effects of seismic and LOCA excitations. For demanding seismic and LOCA scenarios, fuel assembly spacer grids can undergo plastic deformations. These plastic deformations must not prohibit the complete insertion of the control rod assemblies and the cooling of the fuel rods after the accident. The specific structure of the GAIA spacer grid produces a unique and stable compressive deformation mode which maintains the regular array of the fuel rods and guide tubes. The stability of the spacer grid allows it to absorb a significant amount of energy without a loss of load-carrying capacity. The GAIA-specific grid behavior is in contrast to the typical spacer grid, which is characterized by a buckling instability. The increased mechanical robustness of the GAIA spacer grid is advantageous in meeting the increased seismic and LOCA loadings and the associated safety requirements. The unique GAIA spacer grid behavior will be incorporated into AREVA NP's licensed methodologies to take full benefit of the increased mechanical robustness.

Numerical Analysis of the Three-Dimensional Nonlinear Waves Caused by Breaking Waves around a Floating Offshore Structure (부유식 해양구조물 주위의 쇄파현상을 동반한 3차원 비선형성 파의 수치해석)

  • 박종천;관전수명
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.62-73
    • /
    • 1996
  • Numerical simulation is made of the three-dimensional wave breaking motion about a part of a floating offshore structure containing a circular cylinder mounted vertically onto a lower hull in regular periodic gravity wave generated by a numerical wave maker. TUMMAC-VIII finite-difference method is newly developed for such a problem. By use of density-function technique the three-dimensional wave breaking motion is approximately implenented in the framework of rectangular grid system. A porosity technique is devised for the implementation of the no-slip bydy boundary conditions. The generation of breaking waves by the interaction of incident waves with the structure is well simulated and interesting features of breaking waves are revealed with containing degree of quantitative and qualitative accuracy.

  • PDF

Using Spatial Data and Land Surface Modeling to Monitor Evapotranspiration across Geographic Areas in South Korea (공간자료와 지면모형을 이용한 면적증발산 추정)

  • Yun J. I.;Nam J. C.;Hong S. Y.;Kim J.;Kim K. S.;Chung U.;Chae N. Y.;Choi T. J
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.149-163
    • /
    • 2004
  • Evapotranspiration (ET) is a critical component of the hydrologic cycle which influences economic activities as well as the natural ecosystem. While there have been numerous studies on ET estimation for homogeneous areas using point measurements of meteorological variables, monitoring of spatial ET has not been possible at landscape - or watershed - scales. We propose a site-specific application of the land surface model, which is enabled by spatially interpolated input data at the desired resolution. Gyunggi Province of South Korea was divided into a regular grid of 10 million cells with 30m spacing and hourly temperature, humidity, wind, precipitation and solar irradiance were estimated for each grid cell by spatial interpolation of synoptic weather data. Topoclimatology models were used to accommodate effects of topography in a spatial interpolation procedure, including cold air drainage on nocturnal temperature and solar irradiance on daytime temperature. Satellite remote sensing data were used to classify the vegetation type of each grid cell, and corresponding spatial attributes including soil texture, canopy structure, and phenological features were identified. All data were fed into a standalone version of SiB2(Simple Biosphere Model 2) to simulate latent heat flux at each grid cell. A computer program was written for data management in the cell - based SiB2 operation such as extracting input data for SiB2 from grid matrices and recombining the output data back to the grid format. ET estimates at selected grid cells were validated against the actual measurement of latent heat fluxes by eddy covariance measurement. We applied this system to obtain the spatial ET of the study area on a continuous basis for the 2001-2003 period. The results showed a strong feasibility of using spatial - data driven land surface models for operational monitoring of regional ET.

Study on Roll Motion Characteristics of a Rectangular Floating Structure in Regular Waves (규칙파 중 사각형 부유식 구조물의 횡동요 운동특성에 대한 연구)

  • Kim, Min-Gyu;Jung, Kwang-Hyo;Park, Sung-Boo;Lee, Gang-Nam;Park, Il-Ryong;Suh, Sung-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • This study focused on the roll motion characteristics of a two-dimensional (2D) rectangular floating structure under regular beam sea conditions. An experiment was conducted in a 2D wave tank for a roll free decay test in calm water and the roll motion in a range of regular waves with and without heave motion to investigate the motion response and heave influence on the roll motion. A numerical study was carried out using Reynolds-averaged Navier Stokes (RANS)-based CFD simulations. A grid convergence test was conducted to accurately capture the wave condition on the free surface based on the overset mesh and wave forcing method. It was found in the roll free decay test that the numerical results agreed well with the experimental results for the natural roll period and roll damping coefficient. It was also observed that the heave motion had an impact on the roll motion, and the responses of the heave and roll motion from the CFD simulations were in reasonable agreement with those from the experiment.

A Study on the Digitizing of Terrain by Triangulated Irregular Networks (비정규삼각망 데이타구조에 의한 지형의 수치화)

  • Lee, Suck Chan;Kho, Young Ho;Lee, Chang Kyung;Choi, Byoung Gil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.325-334
    • /
    • 1994
  • Modern society is the age of a high state of information and demands more effective land information. Moreover, because the use of land in Korea is intensive, Korea requires more synthetic and systematic geographical information for which the digitizing of terrain is prerequisite. This study aims at development of the data structure which is suitable to the digitizing of terrain for Geographical Information System(GIS). Regular grid has been used generally in Digital Terrain Model(DTM), for it is easy to manipulate. But regular cannot reflect well the terrain surface features. In the meantime, Triangulated Irregular Network(TIN) has complex data structure, but it can describe well terrain surface features and is useful in various applications. In this paper the method which constructs effective DTM by improving TIN has been researched.

  • PDF