• Title/Summary/Keyword: reinforced concrete shells

Search Result 31, Processing Time 0.026 seconds

An Experimental Study on the Strength and Behavior of Reinforced Concrete Columns Containing Shells Substituted a Fine Aggregate (패각류를 잔골재 대체재로 사용한 철근콘크리트 기둥의 내력 및 거동에 관한 실험적 연구)

  • Koo, Hae-Shik
    • KIEAE Journal
    • /
    • v.8 no.3
    • /
    • pp.69-76
    • /
    • 2008
  • This is an experimental study on the maximum load value and structural behavior of reinforced concrete columns containing shells as a substitute fine aggregate of concrete, through making reinforced concrete test columns with shells. In this study, the main factors consist of the grain sizes and the percentage of substitution of shells to fine aggregate in two kinds of water cement ratio. The results of the study showed as followed. The maximum load value decreased with increased the rate of substitution about shells and as the grain size of shells became smaller, the load values of them were somewhat changed higher but it is important that we must consider absorption rate of shells sufficiently. If we have a proper water cement ratio in column productions containing the shells, we can meet the requirement of the percentage of substitution until 30%. The deflection and deformation properties of reinforced concrete columns with shells represented typical curves like that of normal reinforced concrete. But as the failture types, they are able to make some change without being out of the fundamental graph forms. After the analyzing structural behaviors and the properties of reinforced concrete test columns containing shells, the most excellent grain size of shells represented 3.0mm and less with taking uniformly, and the percentage of practicable substitution of them to fine aggregate was about 30%.

An Experimental Study on the Structural Characteristics of Reinforced Concrete Beams Containing Oyster Shells (굴패각을 사용한 철근콘크리트 보의 특성에 관한 실험적 연구)

  • Lee, Sang-cheol;Woo, Song-gyu;An, Yong-deok;Jun, Hak-su;Koo, Hae-shik
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.135-142
    • /
    • 2007
  • This is an experimental study on the structural characteristics of reinforced concrete beams using of the oyster shells as a substitute fine aggregate of concrete. In this study, the main factors consist of the grain sizes and the percentage of substitution of oyster shells to fine aggregate in the equal water cement ratio. The results of the study showed as followed. The initial load value of them represented similar constant within 10% of the maximum load value in each test beam. But the maximum load value and the ultimate load value decreased with increased grain size and the rate of substitution. As the grain size of oyster shells became smaller, the load values of them were somewhat higher. The deflection among deformation properties of reinforced concrete beams with oyster shells represented typical curves like that of normal reinforced concrete. In the deformation of steel and concrete, the deformation was proportionated to the load till yield point and from yield point until approaching the ultimate load point. One type was typical curve of the load and the deformation and the other type irregularly was changed to very small deformation for the load increase centering around load axis. After the analyzing structural behaviors and the properties of reinforced concrete test beams with oyster shells, the most excellent grain size of oyster shells represented 1.0mm and less or 5.0mm and less with taking uniformly, and the percentage of practicable substitution of them to fine aggregate was about 30%.

A Study on the Shear Behavior of Reinforced Concrete Beams Using of Cockle Shells as Fine Aggregate (고막 패각을 잔골재로 사용한 철근콘크리트 보의 전단 거동에 관한 연구)

  • Kim, Jeong-Sup;Shin, Yong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.89-95
    • /
    • 2004
  • 1) As result of specimen with shear reinforcing bar of reinforced concrete beam, ductile coefficient of specimen was high in specimen containing Cockle shells based on non-mixed specimen. In increase rate of specimens, yield strength was similar in specimens containing Cockle shells and non-mixed specimens and maximum strength was higher in specimen containing Cockle shells. 2) To sum up the above experimental results, it is found that using splitted Cockle shells as aggregate for concrete by 10%~ 15% showed the same or higher compressive strength and shear strength as concretes using general aggregate and it can be used as substitute aggregate of concrete. It is considered that for future use of splitted Cockle shells as substitute concrete aggregate, continuous researches of its durability, applicability and economy are needed.

A Study on Ductility Capacity of Reinforced Concrete Beam without Shear Reinforcement Using Cockle Shells as Fine Aggregate (고막 패각을 잔골재로 사용한 전단보강근이 없는 철근콘크리트 보의 연성에 관한 연구)

  • Kim, Jeong-Sup;Kim, kwang-seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.2 s.16
    • /
    • pp.139-146
    • /
    • 2005
  • As a result of compressive strength, specimens having mixture rate of cockle shells of $15\%\;and\;20\%$ showed more increases of compressive strength than non-mixture specimens as age increases. Ductility capacity of specimens was higher in specimens mixing cockle shells than in specimens using general fine aggregates and specimen of $10\%$ of cockle shells was highest in ductility capacity. To sum up all experimental results, ductility capacity of specimen without shear reinforcement using mixture of cockle shell was higher than non-mixture specimen and it is considered that mixture of cockle shells up to $20\%$ as fine aggregate for concrete will be available. Continuous researches on durability, workability and economy of crushed cockle shells used for substitute fine aggregate of concrete will be needed.

Nonlinear Analysis of Reinforced and Prestressed Concrete Shells Using Layered Elements with Drilling DOF

  • Kim Tae-Hoon;Choi Jung-Ho;Kim Woon-Hak;Shin Hyun Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.645-654
    • /
    • 2005
  • This paper presents a nonlinear finite element procedure for the analysis of reinforced and prestressed concrete shells using the four-node quadrilateral flat shell element with drilling rotational stiffness. A layered approach is used to discretize, through the thickness, the behavior of concrete, reinforcing bars and tendons. Using the smeared-crack method, cracked concrete is treated as an orthotropic nonlinear material. The steel reinforcement and tendon are assumed to be in a uni-axial stress state and to be smeared in a layer. The constitutive models, which cover the loading, unloading, and reloading paths, and the developed finite element procedure predicts with reasonable accuracy the behavior of reinforced and prestressed concrete shells subjected to different types of loading. The proposed numerical method fur nonlinear analysis of reinforced and prestressed concrete shells is verified by comparison with reliable experimental results.

Nonlinear Dynamic Analysis of Reinforced Concrete Shells Using Layered Elements with Drilling DOF (회전자유도를 갖는 층상화 요소를 이용한 철근콘크리트 쉘구조의 비선형 동적해석)

  • 김태훈;이상국;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.21-27
    • /
    • 2001
  • In this paper, a nonlinear finite element procedure is presented for the dynamic analysis of reinforced concrete shells. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis of reinforced concrete structures was used. A 4-node flat shell element will drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor(HHT) algorithm. The proposed numerical method for the nonlinear dynamic analysis of reinforced concrete shells is verified by comparison with reliable analytical results.

  • PDF

Nonlinear Analysis of Reinforced Concrete Shells(II) (철근(鐵筋)콘크리트 쉘구조(構造)의 비선형(非線型) 해석(解析)(II))

  • Kim, Woon Hak;Shin, Hyun Mock;Shin, Hyun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.89-98
    • /
    • 1991
  • In this paper, several numerical examples are analyzed and the results are compared with those from other reseachers to verify the applicability and the validity of the geometric and material nonliner analysis method of reinforced concrte shells refered to the paper ( ). As a results, this method is a useful tool to account for geometric and material nonlinearities in detailed analysis of reinforced concrete shells of general form.

  • PDF

An Experimental Study on the Engineering Characteristics of Perforated Reinforced Concrete Beams containing Shells (패각을 사용한 철근콘크리트 유공보의 공학적 특성에 관한 연구)

  • Koo, Hae-Shik
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.139-146
    • /
    • 2015
  • This is an experimental study on the engineering characteristics of perforated reinforced concrete beams with shells. In the material matter of this study, the water cement ratio put 60%, the ratio of substitution of oyster shells to fine aggregate 30%. And in the structural matter, the form of opening put circle and square, the size of opening as the radius and the length of it changed from one to three times of the beam depth with a change presence and absence of reinforced steel around opening. All thirteen reinforced concrete beam tests composed one standard beam and twelve six beams with the circle and square opening were tested in shear strength under two points loading and compared and analyzed the characteristics of test beams under the same conditions one another. The results of the study showed as followed. 1) The initial crack load value of the opening test beams is similar the standard beam but the maximum load value decreased with increase in proportion of the opening size, in the square opening than the circle opening and in the absence than the presence of reinforced steel. 2) As the difference between the circle opening and the square opening beams is represented 2.17~9.8% in the maximum load value and the load capacity of the square opening suddenly decrease than it of the circle opening, it is judged because of the shortage of concrete section, the concentration of the stress in the corner of the square opening and material influence of shell substitution. 3) The failure figure such as the pattern of the crack and so on is represented brittle failure as the opening size is the bigger and the ratio of substitution is higher because of the lack material properties.

Inelastic vector finite element analysis of RC shells

  • Min, Chang-Shik;Gupta, Ajaya Kumar
    • Structural Engineering and Mechanics
    • /
    • v.4 no.2
    • /
    • pp.139-148
    • /
    • 1996
  • Vector algorithms and the relative importance of the four basic modules (computation of element stiffness matrices, assembly of the global stiffness matrix, solution of the system of linear simultaneous equations, and calculation of stresses and strains) of a finite element computer program for inelastic analysis of reinforced concrete shells are presented. Performance of the vector program is compared with a scalar program. For a cooling tower problem, the speedup factor from the scalar to the vector program is 34 for the element stiffness matrices calculation, 25.3 for the assembly of global stiffness matrix, 27.5 for the equation solver, and 37.8 for stresses, strains and nodal forces computations on a Gray Y-MP. The overall speedup factor is 30.9. When the equation solver alone is vectorized, which is computationally the most intensive part of a finite element program, a speedup factor of only 1.9 is achieved. When the rest of the program is also vectorized, a large additional speedup factor of 15.9 is attained. Therefore, it is very important that all the modules in a nonlinear program are vectorized to gain the full potential of the supercomputers. The vector finite element computer program for inelastic analysis of RC shells with layered elements developed in the present study enabled us to perform mesh convergence studies. The vector program can be used for studying the ultimate behavior of RC shells and used as a design tool.

Nonlinear Analysis of Reinforced Concrete Shells(II) (철근(鐵筋)콘크리트 쉘구조(構造)의 비선형(非線型) 해석(解析)(II))

  • Kim, Woon Hak;Shin, Hyun Mock;Shin, Hyun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.79-87
    • /
    • 1991
  • An efficient numerical procedure for material and geometric nonlinear analysis of reinforced concrete shells under monotonically increasing loads through their elastic, inelastic and ultimate load ranges is developed by using the finite element method. The 8-node Serendipity isoparametric element developed by the degeneration approach including the transverse shear deformation is used. A layered approach is used to represent the steel reinforcement and to discretize the concrete behavior through the thickness. The total Lagrangian formulation based upon the simplified Von Karman strain expressions is used to take into account the geometric nonlinearity of the structure. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and a model for reinforcement in the concrete; and also a so-called smeared crack model is incorporated. The steel reinforcement is assumed to be in a uniaxial stress state and is modelled as a smeared layer of equivalent thickness. This method will be verified a useful tool to account for geometric and material nonlinearities in detailed analysis of reinforced concrete concrete shells of general form through numerical examples of the sequential paper( ).

  • PDF