• Title/Summary/Keyword: repetitive transcranial magnetic stimulation

Search Result 39, Processing Time 0.032 seconds

Effects of High Frequency Repetitive Transcranial Magnetic Stimulation on Function in Subacute Stroke Patients

  • Cha, Hyun-Gyu;Kim, Myoung-Kwon;Nam, Hyoung-Chun;Ji, Sang-Goo
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.192-196
    • /
    • 2014
  • The aim of the present study was to examine the effects of high and low frequency repetitive transcranial magnetic stimulation on motor cortical excitability and the balance function in subacute stroke patients. Twenty-four subjects were randomly assigned to either the high frequency (HF) rTMS group, or the low frequency (LF) rTMS group, with 12 subjects each. All subjects received routine physical therapy. In addition, both groups performed a total of 20 sessions of rTMS for 20 minutes, once a day, 5 times per week, for a 4-week period. In the HF rTMS group, 10 Hz rTMS was applied daily to the hotspot of the lesional hemisphere; and in the LF rTMS group, 1 Hz rTMS was applied daily to the hotspot of the nonlesional hemisphere. Motor cortex excitability was determined by motor evoked potentials, and the balance function was evaluated by use of the Balance Index (BI) and the Berg Balance Scale (BBS), before and after the intervention. The change rate in the value of each variable differed significantly between the two groups (p<0.05). Furthermore, significant differences were observed between all post-test variables of the two groups (p<0.05). In the HF rTMS, significant differences were found in all the pre- and post-test variables (p<0.05). On the other hand, in the LF rTMS, significant difference was observed only between the pre- and post-test results of BI and BBS (p<0.05). The findings demonstrate that HF rTMS can be more helpful in improving the motor cortical excitability and balance function of patients with subacute stroke treatment than LF rTMS, and that it may be used as a practical adjunct to routine rehabilitation.

The Effect of Repetitive Transcranial Magnetic Stimulation-Induced Proprioceptive Deafferentation to Ipsilateral and Contralateral Motor Evoked Potentials (반복적 경두개자기자극을 통한 고유감각 구심로 차단이 동측 및 반대측 운동유발전위에 미치는 영향)

  • Kim, Min-Jeong;Lee, Kyoung-Min;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.8 no.2
    • /
    • pp.158-162
    • /
    • 2006
  • Background: It has been proposed that proprioceptive input can modulate neural excitability in both primary motor cortices (M1) simultaneously, although direct evidence for this is still lacking. Previous studies showed that proprioceptive accuracy of one hand is reduced after the application of one-Hz repetitive transcranial magnetic stimulation (rTMS) for 15 minutes over the contralateral somatosensory cortex. The aim of this study was to investigate the effect of rTMS-induced central proprioceptive deafferentation to excitability of both M1 as reflected in ipsilateral and contralateral motor evoked potentials (MEP). Methods: MEPs of both abductor pollicis bravis (APB) muscles were recorded using single-pulse TMS over right M1 in seven healthy subjects. Immediately after one-Hz rTMS was applied for 15 minutes over the right somatosensory cortex, the MEP measurement was repeated. The proprioceptive function of the left thumb was assessed, before and after rTMS, using a position-matching task. Results: There was an increase in ipsilateral MEP after the rTMS: whereas no MEPs were recorded on the ipsilateral hand before the rTMS, MEPs were recorded in both ipsilateral and contralateral hand in three of seven subjects. At the same time, the mean log amplitude was reduced and the mean latency was prolonged in the contralateral MEP. Conclusions: rTMS-induced central proprioceptive deafferentation reduces the MEP generation in the contralateral hand, and fascilitates that in the ipsilateral hand. A further study with a larger sample seems warranted to confirm this finding and to elucidate the neurophysiology underlying it.

  • PDF

Effect of Combined Therapy of Robot and Low-Frequency Repetitive Transcranial Magnetic Stimulation on Hemispatial Neglect in Stroke Patients

  • Kim, Sang Beom;Lee, Kyeong Woo;Lee, Jong Hwa;Lee, Sook Joung;Park, Jin Gee;Lee, Joung Bok
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.788-797
    • /
    • 2018
  • Objective To investigate the effect of upper limb rehabilitation combining robot with low-frequency repetitive transcranial magnetic stimulation (rTMS) on unilateral spatial neglect in stroke patients. Methods Patients who had hemispatial neglect after right hemisphere stroke were randomly divided into rTMS only group, robot only group, and combined group. All groups received conventional neglect therapy and additional treatment for each group. rTMS group received rTMS therapy. Robot group received robot therapy, while combined group received both therapies. The effect of therapy was assessed with Motor-Free Visual Perception Test-3 (MVPT-3), line bisection test, star cancellation test, Catherine Bergego Scale (CBS), Mini-Mental State Examination (MMSE), and the Korean version of Modified Barthel Index (K-MBI). These measurements were evaluated before and after treatment. Results For each group, 10 patients were recruited. There were no significant differences in baseline characteristics or initial values among the three groups. Two weeks after the therapy, all groups showed significant improvement in MVPT-3, line bisection test, star cancellation test, CBS, MMSE, and K-MBI. However, changes in measurements showed no significant differences among groups. Conclusion Treatment effect of the combined therapy of robotic therapy and low-frequency rTMS therapy for hemispatial neglect was not statistically different from that of each single treatment. Results of this study did not prove the superiority of any of the three treatments. Further study with large number of patients is needed to evaluate the superiority of these treatments.

Effects of Differences Frequency of Repeated Transcranial Magnetic Stimulation Applied to the Less Affected Contralesional Corticomotor Area on Upper Extremity Function in Patients with Stroke (뇌졸중 환자의 비손상측 대뇌겉질 운동영역에 적용한 반복 경두개 자기자극의 빈도가 팔 기능에 미치는 영향 )

  • Ha-Na Kim;Sang-Mi Chung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.281-289
    • /
    • 2023
  • Purpose : In this study, we aimed to determine how frequencies different of repetitive transcranial magnetic stimulation applied to the less affected contalesional corticomotor area affect upper extremity motor function in patients with acute stroke within 3 months of onset. By doing so, we aimed to propose a new method of rTMS intervention based on the degree of damage and recovery status of the patient, rather than the generalized rTMS intervention that has been used uniformly. Methods : The rTMS intervention was applied on the contralesional side of the cerebral hemisphere damage. 15 subjects in the HF-rTMS group, 12 subjects in the LF-rTMS group, and 14 subjects in the SF-rTMS group were randomized to receive the rTMS intervention in each group for a total of 10 sessions on five consecutive weekdays for two weeks, and underwent FMA-U to determine changes in upper extremity function following the intervention in each group. FMA-U was performed within 24 hours before and after the rTMS intervention. Results : When the FMA-U was performed to determine the pre- and post-intervention changes in upper extremity motor function within the groups, no statistically significant differences were found in the SF-rTMS group before and after the intervention, but significant statistical differences were found in the HF-rTMS group (p=.006) and the LF-rTMS group (p=.020), with greater significance in the HF-rTMS group than the LF-rTMS group. Conclusion : This study confirmed that compensatory action by activating the less affected contralesional corticomotor area based on the bimodal balance-recovery model can support upper extremity recovery patients with acute stroke within 3 months of onset, depending on the degree of damage level and recovery status. Therefore, the results of the contralesional HF-rTMS application in this study may provide a basis for proposing a new rTMS intervention for upper extremity recovery in stroke patients.

The Effect of Repetitive Transcranial Magnetic Stimulation on H-Reflex Inhibition and Fascilitation of Range of Motion of Spastic Ankle Joint in Chronic Stroke Patients (만성 뇌졸중 시 반복경두개자기자극에 의한 경직성 발목관절의 관절가동 범위 향상 및 H-반사 억제 효과)

  • Cho, Mi-Suk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • Purpose : The purpose of this study was carried out to investigate the effect of repetitive transcranial magnetic stimulation on increase of H-reflex inhibition and fascilitation of range of motion of spastic ankle joint in chronic stroke patients. Methods : 30 chronic stroke patients were randomly divided into three groups, a control group(placebo rTMS group), 5 Hz rTMS group and manual therapy group. The MAS and ROM of ankle joint and H-reflex inhibition of soleus muscle were evaluated on each group. Results : The rTMS group decreased MAS of ankle joint and increased H-reflex inhibition of soleus muscle, and ROM of ankle joint than manual therapy group. The placebo rTMS group did not affected the change of MAS, ROM of ankle joint and H-reflex inhibition of soleus muscle. Conclusion : The rTMS was a good therapeutic tool to improve the foot drop in the chronic stroke patients.

Transcranial Magnetic Stimulation in Gilles de la Tourette Syndrome (뚜렛 증후군에서의 경두개 자기자극술)

  • Lee, Moon-Soo
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.18 no.1
    • /
    • pp.3-10
    • /
    • 2010
  • Gilles de la Tourette syndrome is a chronic motor and vocal tic disorder of childhood onset. Abnornmalities in basal ganglia-thalamo-cortical circuits may play an important role in the pathophysiology underlying the involuntary tics. It is often complicated by comorbid attention-deficit/hyperactivity disorder or obsessive-compulsive disorder. Transcranial magnetic stimulation(TMS) is a neurophysiologic technique with research ap-plication. As there is good evidence that this technique can modify cortical activity, repetitive TMS is also used for treatment to change the cortical excitability and therefore affect underlying interconnected cortical-sub-cortical loop. We reviewed the neurophysiologic parameters and the clinical applicability of TMS and rTMS.

  • PDF

The Persisted Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation to Augment Task-Specific Induced Hand Recovery Following Subacute Stroke: Extended Study

  • Tretriluxana, Jarugool;Thanakamchokchai, Jenjira;Jalayondeja, Chutima;Pakaprot, Narawut;Tretriluxana, Suradej
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.777-787
    • /
    • 2018
  • Objective To examine the long-term effects of the low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) combined with task-specific training on paretic hand function following subacute stroke. Methods Sixteen participants were randomly selected and grouped into two: the experimental group (real LF-rTMS) and the control group (sham LF-rTMS). All the 16 participants were then taken through a 1-hour task-specific training of the paretic hand. The corticospinal excitability (motor evoke potential [MEP] amplitude) of the non-lesioned hemisphere, and the paretic hand performance (Wolf Motor Function Test total movement time [WMFT-TMT]) were evaluated at baseline, after the LF-rTMS, immediately after task-specific training, 1 and 2 weeks after the training. Results Groups comparisons showed a significant difference in the MEP after LF-rTMS and after the training. Compared to the baseline, the MEP of the experimental group significantly decreased after LF-rTMS and after the training and that effect was maintained for 2 weeks. Group comparisons showed significant difference in WMFT-TMT after the training. Only in the experimental group, the WMFT-TMT of the can lifting item significantly reduced compared to the baseline and the effect was sustained for 2 weeks. Conclusion The results of this study established that the improvement in paretic hand after task-specific training was enhanced by LF-rTMS and it persisted for at least 2 weeks.

Combined BOLD fMRI and Transcranial Magnetic Stimulation Study: Evaluation of Ipsilateral Motor Pathway of Stroke Patients

  • 배성진;장용민;장성호;변우목;강덕식
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.104-104
    • /
    • 2001
  • Purpose: In this study, we investigated the possible motor pathways of hemiplegic stroke patients usin combined TMS and BOLD fMRI approach and evaluated the correlation between TMS a fMRI methods. Method: Four subjects, who demonstrated left hemiplegia after stroke, are included. TMS was performed using a Dantec Mag2 stimulator (Dantec Company, USA) in single puls mode with figure eight-shaped coil. Following TMS localization, The BOLD T2*-weight images were acquired with echo planar imaging sequence (TR = 1.2 sec, TE = 60 msec, and flip angle = 90). Motor activation was studied by means of a repetitive fing flexion-extension task. The stimulation protocol comprised 10 cycles of alternating activati and rest (10 images per cycle). Total 60 cycles were performed and each cycle take abou 1.5 sec. The resulting images were then analyzed with STIMULATE (CMRR, U, o Minnesota) to generate functional maps using a student t-test (p < 0.0005) and cluste analysis.

  • PDF