• Title/Summary/Keyword: resistance to sulfuric acid attack

Search Result 10, Processing Time 0.026 seconds

Effectiveness of fibers and binders in high-strength concrete under chemical corrosion

  • Nematzadeh, Mahdi;Fallah-Valukolaee, Saber
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.243-257
    • /
    • 2017
  • Investigating the properties and durability of high-strength concrete exposed to sulfuric acid attack for the purpose of its application in structures exposed to this acid is of outmost importance. In this research, the resistance and durability of high-strength concrete containing macro-polymeric or steel fibers together with the pozzolans of silica fume or nano-silica against sulfuric acid attack are explored. To accomplish this goal, in total, 108 high-strength concrete specimens were made with 9 different mix designs containing macro-polymeric and steel fibers at the volume fractions of 0.5, 0.75, and 1.0%, as well as the pozzolans of silica fume and nano-silica with the replacement levels of 10 and 2%, respectively. After placing the specimens inside a 5% sulfuric acid solution in the periods of 7, 21, and 63 days of immersion, the effect of adding the fibers and pozzolans on the compressive properties, ultrasonic pulse velocity (UPV), and weight loss of high-strength concrete was investigated and the respective results were compared with those of the reference specimens. The obtained results suggest the dependency of the resistance and durability loss of high-strength concrete against sulfuric acid attack to the properties of fibers as well as their fraction in concrete volume. Moreover, compared with using nano-silica, using silica fume in the fibrous concrete mix leads to more durable specimens against sulfuric acid attack. Finally, an optimum solution for the design parameters where the crushing load of high-strength fibrous concrete is maximized was found using response surface method (RSM).

Influence of Mineral Admixtures on the Resistance to Sulfuric Acid and Sulfate Attack in Concrete (콘크리트의 황산 및 황산염 침투 저항성에 미치는 광물질 혼화재의 영향)

  • Bae, Su-Ho;Park, Jae-Im;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.219-228
    • /
    • 2010
  • It has been well known that concrete structures exposed to acid and sulfate environments such as sewer, sewage and wastewater, soil, groundwater, and seawater etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to concrete matrix by forming expansive hydration products due to the reaction between portland cement hydration products and acid and sulfate ions. Objectives of this experimental research are to investigate the effect of mineral admixtures on the resistance to acid and sulfate attack in concrete and to suggest high-resistance concrete mix against acid and sulfate attack. For this purpose, concretes specimens with three types of cement (ordinary portland cement (OPC), binary blended cement (BBC), and ternary blended cement (TBC) composed of different types and proportions of admixtures) were prepared at water-biner ratios of 32% and 43%. The concrete specimens were immersed in fresh water, 5% sulfuric acid, 10% sodium sulfate, and 10% magnesium sulfate solutions for 28, 56, 91, 182, and 365 days, respectively. To evaluate the resistance to acid and sulfate for concrete specimens, visual appearance changes were observed and compressive strength ratios and mass change ratios were measured. It was observed from the test results that the resistance against sulfuric acid and sodium sulfate solutions of the concretes containing mineral admixtures were much better than that of OPC concrete, but in the case of magnesium sulfate solution the concretes containing mineral admixtures was less resistant than OPC concrete due to formation of magnesium silicate hydrate (M-S-H) which is non-cementitious.

Effect of CGS Fine Aggregate on the Resistance to Sulfate Attack in Concrete (CGS 잔골재를 사용한 콘크리트의 황산염 침투 저항성에 미치는 영향)

  • Han, Jun-Hui;Kim, Su-Hoo;Beak, Sung-Jin;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.179-180
    • /
    • 2022
  • In this study, analyzed the effect of using CGS before and after the pre-treatment process as fine aggregate on the resistance to sulfate attack in concrete. As a result of the analysis, Although it showed a similar tendency to Plain (CS100), it is judged that it is necessary to analyze the resistance to sulfate attack due to the increase in immersion periods such as 180 days and 365 days.

  • PDF

The Compressive Strength and Durability Properties of Polypropylene Fiber Reinforced EVA Concrete (폴리프로필렌 섬유 보강 EVA 콘크리트의 압축강도 및 내구성)

  • Nam, Ki Sung;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.11-19
    • /
    • 2015
  • The important properties of EVA (ethylene vinyl acetate) redispersible polymer was waterproof, densification of internal pore space of concrete and ball bearing and micro filler. Also, the significant role of polypropylene(PP) fiber was crack control and blockade of movement for deterioration factors. The most studies for EVA were limited in the field of mortar and PP fiber reinforced concrete had been studied in the state of being restricted unit water content, rich mix and mixing much of the fiber without considering construction site. Therefore, the control mix design were applied in ready mixed concrete using 10 % fly ash of total cement weight used in batch plant. On the basis of control mix design, EVA contents ranging from 0 % to 10 % of total cement weight and PP fiber contents ranging from 0 % to 0.5 % of EVA concrete volume were used in the mix designs. The results showed the maximum compressive strength value was measured at EVA 5.0 % and PP fiber 0.1 %, the minimum water absorption ratio was at EVA 10 % and PP fiber 0 %, the durability factor for freezing and thawing resistance was at EVA 5.0 % and PP fiber 0.3 % and the minimum weight reduction ratio of resistance to sulfuric acid attack was at EVA 10 % and PP fiber 0.5 % after curing age 42days. Meanwhile, From these results, PP fiber reinforced EVA concrete would be very benefit, if each optimal mix types were used in hydraulic structures, underground utilities and agricultural structures.

Resistance of Alkali Activated Slag Cement Mortar to Sulfuric Acid Attack (알칼리 활성화 슬래그 시멘트 모르타르의 내황산성)

  • Min, Kyung-San;Lee, Seung-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.633-638
    • /
    • 2007
  • The setting time of alkali activated slag cement tends to be much faster than ordinary Portland cement, and its compressive strength had been higher from the 1 day but became lower than that of the cement on the 28 days. According to the results of the surface observation, weight loss, compressed strength, and erosion depth tests on the sulphuric acid solution. It has been drawn that alkali activated slag cement has a higher sulphate resistance than ordinary Portland cement, and in particular, the alkali activated slag cement added 5 wt% alumina cement has little deterioration on the sulphuric acid solution. The reason why the alkali activated slag cement has higher sulphate resistance than other hardened cement pastes is that it has no $Ca(OH)_2$ reactive to sulphate ion, and there is little $CaSO_4{\cdot}2H_2O$ production causing volume expansion, unlike other pastes. And it is supposed that $Al(OH)_3$ hydrates with high sulphate resistance, which is produced by adding the alumina cement increases the sulfate resistance.

A study on the development of self-healing concrete and repair materials with the resistance to sulfuric acid attack (내황산성 자기치유 콘크리트 및 단면복구재 개발에 관한 연구)

  • Bang, Sin-Young;Kim, Jeong-Mi;Ahn, Tae-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.84-85
    • /
    • 2015
  • The aim of this study is to develop crack self-healing concrete and repair materials with the sulfate resistance using geo-materials and by-products for practical industrial application. Research has been done on the healing of cracks in aged concrete, but it seems that very little is known about the actual healing mechanism and its conditions. In this research, the essential properties of geo-materials with pozzolanic reaction for self-healing were analyzed and discussed.

  • PDF

Mechanical and durability properties of concrete incorporating glass and plastic waste

  • Abdelli, Houssam Eddine;Mokrani, Larbi;Kennouche, Salim;Aguiar, J.L. Barroso de
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.173-181
    • /
    • 2021
  • The main objective of this work is to contribute to the valorization of plastic and glass waste in the improvement of concrete properties. Waste glass after grinding was used as a partial replacement of the cement with a percentage of 15%. The plastic waste was cut and introduced as fibers with 1% by the total volume of the mixture. Mechanical and durability tests were conducted for various mixtures of concrete as compressive and flexural strengths, water absorption, ultrasonic pulse velocity, and acid attack. Also, other in-depth analyses were performed on samples of each variant such as X-ray diffraction (XRD), thermogravimetric analysis (DSC-TGA), and scanning electron microscope (SEM). The results show that the addition of glass powder or plastic fibers or a combination of both in concrete improved in the compression and flexural strengths in the long term. The highest compressive strength was obtained in the mix which combines the two wastes about 26.72% of increase compared to the control concrete. The flexural strength increased in the mixture containing the glass powder. Therefore, the mixture with two wastes exhibits better resistance to aggressive sulfuric acid attack, and incorporating glass powder improves the ultrasonic pulse velocity.

Strength and Durability of Mortar Made with Plastics Bag Waste (MPBW)

  • Ghernouti, Youcef;Rabehi, Bahia
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.3
    • /
    • pp.145-153
    • /
    • 2012
  • The aim of this study is to explore the possibility of re-cycling a waste material that is now produced in large quantities, while achieving an improvement of the mechanical properties and durability of the mortar. This study examines the mechanical properties and the durability parameters of mortars incorporating plastics bag wastes (PBW) as fine aggregate by substitution of a variable percentage of sand (10, 20, 30 and 40 %). The influence of the PBW on the, compressive and flexural strength, drying shrinkage, fire resistance, sulfuric acid attack and chloride diffusion coefficient of the different mortars, has been investigated and analyzed in comparison to the control mortar. The results showed that the use of PBW enabled to reduce by 18-23 % the compressive strength of mortars containing 10 and 20 % of waste respectively, which remains always close to the reference mortar (made without waste). The replacement of sand by PBW in mortar slows down the penetration of chloride ions, improves the behavior of mortars in acidic medium and improves the sensitivity to cracking. The results of this investigation consolidate the idea of the use of PBW in the field of construction.

Evaluation of Long-Term Performance of Concrete Blended with Industrial Waste(Oyster Shell) (산업폐기물(굴패각)을 혼입한 콘크리트의 장기성능 평가)

  • 김학모;양은익;이성태;정용일;최중철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.227-232
    • /
    • 2002
  • To evaluate the practical application of oyster shells as construction materials, an experimental study was performed. More specifically, the long-term mechanical properties and durability of concrete blended with oyster shells were investigated. Test results indicate that long-term strength of concrete blended with 10% oyster shells is almost identical to that of normal concrete. However, the long-term strength of concrete blended with 20% oyster shells Is appreciably lower than that of normal concrete. 1'hereby, concrete with higher oyster shell has the possibility giving a bad influence on the concrete long-term strength. Elastic modulus of concrete blended with crushed oyster shells decreases as the blending mixture ratio increases. Namely, the modulus is reduced by approximately 10∼15% when oyster shells are blended up to 20% replacing the fine aggregate. The drying shrinkage strain increases as the blending ratio increases. In addition, the existing model code of drying shrinkage does not coincide with the test results of this study. An adequate prediction equation needs to be developed. The utilization of oyster shells as the fine aggregate in concrete has an insignificant effect on freezing and thawing resistance, carbonation and sulfuric acid attack of concrete recycling. However, water permeability is considerably improved.

  • PDF

Evaluation of Effectiveness of Concrete Coated with Bacterial Glycocalix under Simulated Sewage Environments (유사 하수환경에서 글라이코 캘릭스 코팅 콘크리트의 효율성 평가)

  • Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.97-104
    • /
    • 2020
  • The present study conducted mock-up tests under the simulated sewage environments to examine the practical significance and limitation of coating materials that were previously developed on the basis of the bacterial glycocalix as a protection of concrete structures exposed to microbiological and sulphate attacks. The variations of the compressive strength and mass of the concrete due to the sulphate attack were measured using cylinder specimens. The bacteria growth and glycocalix formulation were calculated from the samples extracted from the sewage pipes. The next generation sequencing analysis was also conducted for environmental damage assessment due to the use of Rhodobacter capsulatus in the simulated sewage environments. The mock-up tests revealed that the developed coating materials have a good potential in resisting the sulphate attack, indicating no reduction on compressive strength and mass of the coated concrete under the sewage environment. At the age of 91 days, the concentrations of viable bacteria and glycocalix measured from the hardened coating materials were 1.4×104cell/mL and 67.5mg/㎤, respectively. Moreover, harmful strains were not observed in the sewage water including glycocalix-coated concrete pipes. This implies that Rhodobacter capsulatus used in the coating materials does not influence negatively the microorganism cluster in the sewage environments.