• Title/Summary/Keyword: reverse annealing

Search Result 84, Processing Time 0.034 seconds

Reverse annealing of $P^+/B^+$ ion shower doped poly-Si

  • Jin, Beop-Jong;Hong, Won-Eui;Ro, Jae-Sang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.752-755
    • /
    • 2006
  • Reverse annealing was observed in $P^+/B^+$ ion shower doped poly-Si upon activation annealing. Phosphorous or boron was implanted by ion shower doping using a source gas mixture of $PH_3/H_2$ or $B_2H_6/H_2$. Activation annealing was conducted using a tube furnace in the temperature ranges from $350^{\circ}C$ to $650^{\circ}C$. Hall measurement revealed that reverse annealing begins at different annealing temperatures for poly-Si implanted with P and B, respectively. It was observed that reverse annealing starts at $550^{\circ}C$$ in $P^+$ ion shower doped poly-Si, while at $350^{\circ}C$ in the case of B-doping.

  • PDF

Reverse annealing of boron doped polycrystalline silicon

  • Hong, Won-Eui;Ro, Jae-Sang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.140-140
    • /
    • 2010
  • Non-mass analyzed ion shower doping (ISD) technique with a bucket-type ion source or mass-analyzed ion implantation with a ribbon beam-type has been used for source/drain doping, for LDD (lightly-doped-drain) formation, and for channel doping in fabrication of low-temperature poly-Si thin-film transistors (LTPS-TFT's). We reported an abnormal activation behavior in boron doped poly-Si where reverse annealing, the loss of electrically active boron concentration, was found in the temperature ranges between $400^{\circ}C$ and $650^{\circ}C$ using isochronal furnace annealing. We also reported reverse annealing behavior of sequential lateral solidification (SLS) poly-Si using isothermal rapid thermal annealing (RTA). We report here the importance of implantation conditions on the dopant activation. Through-doping conditions with higher energies and doses were intentionally chosen to understand reverse annealing behavior. We observed that the implantation condition plays a critical role on dopant activation. We found a certain implantation condition with which the sheet resistance is not changed at all upon activation annealing.

  • PDF

Reverse annealing of boron doped polycrystalline silicon

  • Jin, Beop-Jong;Hong, Won-Eui;Lim, Jung-Yoon;Kim, Deok-Hoi;Uemoto, Tstomu;Kim, Chi-Woo;Ro, Jae-Sang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1277-1280
    • /
    • 2007
  • Isothermal activation annealing was carried out using boron doped SLS poly-using an RTA system. We observed different behavior of reverse annealing depending on the implantation conditions.

  • PDF

Effect of Reversed Austenite on the Damping Capacity of Austenitic Stainless Steel (오스테나이트계 스테인리스강의 감쇠능에 미치는 역변태 오스테나이트의 영향)

  • Kim, Young-Hwa;Sung, Ji-Hyun;Kang, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.70-75
    • /
    • 2015
  • The influence of reversed austenite on the damping capacity in austenitic stainless steel with two phase of martensite and reversed austenite was investigated. The two phases of deformation induced martensite and reversed austenite was obtained by an reverse annealing treatment at $500^{\circ}C{\sim}700^{\circ}C$ for various time after 70% cold rolling. With an increase of the reverse annealing treatment temperature and time, volume fraction of reversed austenite was rapidly increased. With an increase of volume fraction of reveresd austenite, damping capacity was rapidly increased. At same volume of reveresd austenite, damping capacity of reversed austenite obtained by reverse annealing treatment at $700^{\circ}C$ for various time was higher then reveresd austenite obtained by reverse annealing treatment at $500^{\circ}C{\sim}700^{\circ}C$ for 10min. Thus, the damping capacity was affected greatly by reversed austenite obtained by annealing treatment at $700^{\circ}C$ for various time.

Effect of Reverse Transformation on the Mechanical Properties of High Manganease Austenitic Stainless Steel (고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 역변태의 영향)

  • Kang, C.Y.;Hur, T.Y.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.413-418
    • /
    • 2012
  • This study was carried out to investigate the effect of reverse transformation on the mechanical properties in high manganese austenitic stainless steel. Over 95% of the austenite was transformed to deformation-induced martensite by 70% cold rolling. Reverse transformation became rapid above an annealing temperature of $550^{\circ}C$, but there was no significant transformation above $700^{\circ}C$. In addition, with an increasing annealing time at $700^{\circ}C$, reverse transformation was induced rapidly, but the transformation was almost completed at 10 min. There was a rapid decrese in strength and hardness with annealing at temperature above $550^{\circ}C$, while elongation increased rapidly above $600^{\circ}C$. At $700^{\circ}C$, hardness and strength decreased rapidly, and elongation increased steeply with an increasing reverse treatment time up to 10 min, whereas there were no significant change with a treatment time after 10 min. The reverse-transformed austenite showed an ultra-fine grain size less than $0.2{\mu}m$, which made it possible to strengthen the high manganese austenitic stainless steel.

Reverse annealing of boron doped polycrystalline silicon

  • Lim, Jung-Yoon;Hong, Won-Eui;Kim, Deok-Hoi;Uemoto, Tstomu;Kim, Chi-Woo;Ro, Jae-Sang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.264-267
    • /
    • 2008
  • Through-doping conditions with higher energies and doses were intentionally chosen to understand reverse annealing behavior. We observed that the implantation condition plays a critical role on dopant activation. We found a certain implantation condition with which the sheet resistance is not changed at all upon activation annealing.

  • PDF

A Study on the Lattic Damages and Impurity Depth Profiles of ${BF^+}_2$ Ion Implanted Silicon (${BF^+}_2$ 이온 주입된 실리콘 시료의 격자손상과 불순물 농도분포에 대한 연구)

  • 권상직;백문철;차주연;권오준
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.3
    • /
    • pp.294-301
    • /
    • 1988
  • A study on the lattice damages and impurity depth profiles have been performed with BF2 ion implanted silicon materials. Electrical measurement, SIMS and TEM analysis techniques were used in order to identify the reverse annealing phenomena, impurity depth profiles and lattice damages. A typical reverse annealing phenomena were shown at the dose of 1x10**15/cm\ulcorner and non-reverse annealing at the dose of 5x10**15/cm\ulcorner This was explained with the formation of the amorphous region at BF2+ ion implantation with high dose. That is, the amorphous reigons were recrystallized centrated at certain regions were measured by SIMS technique. The dislocation loops-like crystalline defects were observed with TEM cross sections, which were formed at the lattice damaged region during annealing process.

  • PDF

Effect of Reverse Transformation on the Damping Capacity of High Manganease Austenitic Stainless Steel (고 Mn 오스테나이트계 스테인리스강의 감쇠능에 미치는 역변태의 영향)

  • Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.60-65
    • /
    • 2012
  • This study was carried out to investigate the effect of reverse transformation on the damping capacity in high manganese austenitic stainless steel. ${\alpha}^{\prime}$-martensite was formed with the specific direction and surface relief by deformation. Over 95% of the austenite phase was transformed to deformation-induced ${\alpha}^{\prime}$-martensite by 70% cold rolling. Reverse transformation became rapid above an annealing temperature of $550^{\circ}C$, but there was no significant transformation above $700^{\circ}C$. In addition, with increasing annealing time at $700^{\circ}C$, reverse transformation was induced rapidly, but the transformation was almost completed at 10 min. Damping capacity was increased up to $700^{\circ}C$, and than unchanged with the increasing annealing temperature. Damping capacity increased steeply with an increasing reverse treatment time up to 10min, whereas there were no significant change with a treatment time of more than 10 min. Damping capacity increased with an increasing the reversed austenite and was strongly affected by reversed austenite.

Annealing Characteristic of Phosphorus Implanted Silicon Films using an Ion Mass Doping Method (Ion Mass Doping 법을 이용한 Phosphorus 주입된 실리콘 박막의 Annealing 특성)

  • 강창용;최덕균;주승기
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.4
    • /
    • pp.234-240
    • /
    • 1994
  • A large area impurity doping method for poly-Si TFT LCD has been developed. The advantage of this method is the doping of impurities into Si over a large area without mass separation and beam scanning. Phosphorus diluted in hydrogen was discharged by RF(13.56MHz) power and ions from discharged gas were accelerated by DC acceleration voltage and were implanted into deposited Si films. The annealing characteristic of this method was similar to that of the ion implantation method in the low doping concentration. Three mechanisms were evolved in the annealing characteristics of phosphorus doped Si films. Point defects annihilation and the retrogradation of dopant atoms at grain boundaries as a result of grain growth played a major role at low and high annealing temperature, respectively. However, due to the dopant segregation, the reverse annealing range existed at intermediate annealing temperature.

  • PDF

Contact Resistance and Leakage Current of GaN Devices with Annealed Ti/Al/Mo/Au Ohmic Contacts

  • Ha, Min-Woo;Choi, Kangmin;Jo, Yoo Jin;Jin, Hyun Soo;Park, Tae Joo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • In recent years, the on-resistance, power loss and cell density of Si power devices have not exhibited significant improvements, and performance is approaching the material limits. GaN is considered an attractive material for future high-power applications because of the wide band-gap, large breakdown field, high electron mobility, high switching speed and low on-resistance. Here we report on the Ohmic contact resistance and reverse-bias characteristics of AlGaN/GaN Schottky barrier diodes with and without annealing. Annealing in oxygen at $500^{\circ}C$ resulted in an increase in the breakdown voltage from 641 to 1,172 V for devices with an anode-cathode separation of $20{\mu}m$. However, these annealing conditions also resulted in an increase in the contact resistance of $0.183{\Omega}-mm$, which is attributed to oxidation of the metal contacts. Auger electron spectroscopy revealed diffusion of oxygen and Au into the AlGaN and GaN layers following annealing. The improved reverse-bias characteristics following annealing in oxygen are attributed to passivation of dangling bonds and plasma damage due to interactions between oxygen and GaN/AlGaN. Thermal annealing is therefore useful during the fabrication of high-voltage GaN devices, but the effects on the Ohmic contact resistance should be considered.