• Title/Summary/Keyword: ribbed dome

Search Result 4, Processing Time 0.018 seconds

Topology and geometry optimization of different types of domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.1-25
    • /
    • 2016
  • Domes are architectural and elegant structures which cover a vast area with no interrupting columns in the middle, and with suitable shapes can be also economical. Domes are built in a wide variety of forms and specialized terms are available to describe them. According to their form, domes are given special names such as network, lamella, Schwedler, ribbed, and geodesic domes. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The network, lamella, ribbed and Schwedler domes are studied to determine the optimum number of rings, the optimum height of crown and tubular sections of these domes. The minimum volume of each dome is taken as the objective function. A simple procedure is defined to determine the dome structures configurations. This procedure includes calculating the joint coordinates and element constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). The wind loading act on domes according to ASCE 7-05 (American Society of Civil Engineers). This paper will explore the efficiency of various type of domes and compare them at the first stage to investigate the performance of these domes under different kind of loading. At the second stage the wind load on optimum design of domes are investigated for Schwedler dome. Optimization process is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for domes.

A Study on the Optimal Design of TMD According to the Shape of Large Spatial Structures Part 2 (대공간 구조물의 형상에 따른 TMD 최적 설계에 관한 연구 Part 2)

  • Bae, Seok-Hong;Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.83-91
    • /
    • 2020
  • In this study, a tuned mass damper(TMD) was installed to control the displacement response to earthquakes by generalizing to six analysis models according to the shape of the upper structure based on the case of various large spatial structures around the world. The six analysis models are ribbed type, latticed type, elliptical type, gable type, barrel type, and stadium type composed of 3D arch trusses. In this paper, ribbed type, latticed type and elliptical type were analyzed. The mass of each TMD was set to 1% of the total structural mass. Result of analyzing the optimal number and position of the analysis model, the displacement response control was the most excellent in the model with 6 and 8 TMDs, and the displacement response decreased in most cases. The displacement response control was better with installing the TMD at the edge point than focusing the TMD at the center of the analysis model. However, when 10 or more TMDs are installed or concentrated in the center, large loads intensively act on the structure, resulting in increased displacement. Therefore, although it is slightly different depending on the shape, it is judged that the displacement response control is the best to install 6 and 8 TMDs at the close to the edge point.

A Study on the Optimal Design of TMD According to the Shape of Large Spatial Structures Part 1 (대공간 구조물의 형상에 따른 TMD 최적 설계에 관한 연구 Part 1)

  • Bae, Seok-Hong;Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.73-81
    • /
    • 2020
  • In this study, a tuned mass damper(TMD) was installed to control the displacement response to earthquakes by generalizing to six analysis models according to the shape of the upper structure based on the case of various large spatial structures around the world. The six analysis models are ribbed type, latticed type, elliptical type, gable type, barrel type, and stadium type composed of 3D arch trusses. In this paper, ribbed type, latticed type and elliptical type were analyzed. The mass of each TMD was set to 1% of the total structural mass. Result of analyzing the optimal number and position of the analysis model, the displacement response control was the most excellent in the model with 6 and 8 TMDs, and the displacement response decreased in most cases. The displacement response control was better with installing the TMD at the edge point than focusing the TMD at the center of the analysis model. However, when 10 or more TMDs are installed or concentrated in the center, large loads intensively act on the structure, resulting in increased displacement. Therefore, although it is slightly different depending on the shape, it is judged that the displacement response control is the best to install 6 and 8 TMDs at the close to the edge point.

Diffusion Characteristics of Ecklonia cava Spores around Marine Forest Reefs (해중림초 주변의 감태 포자확산 특성)

  • Kim, Yong-Kwan;Lee, Jin-Yeong;Kwak, Ihn-Sil;Kim, Jong-Kyu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.93-102
    • /
    • 2020
  • This study investigated the dif usion characteristics of Ecklonia cava spores around marine forest reefs. For this purpose, a numerical analysis was conducted using field observations in the target area and an EFDC model. Based on the results of field observations and the EFDC model, Flow-3D was performed on three types of marine forest reefs, mamely triangular pyramid reef, double-dome reef, and ribbed reef, to monitor the movement direction and maximum movement distance for E. cava spores. As a result, the equilaterally triangular pyramid reef and double-domed reef were found to have a maximum settlement of spores of 10 m in the northwestern direction and 6 m in the western direction. The ribbed reef had a maximum settlement of spores at 4m. These results show that consideration of the diffusion characteristics of E. cava spores when the seaweeds are installed can increase the effectiveness of the algae as substrate of adhesion.