• Title/Summary/Keyword: rice bran

Search Result 881, Processing Time 0.022 seconds

Chemical composition of banana meal and rice bran from Australia or South-East Asia

  • Natalia S. Fanelli;Leidy J. Torres-Mendoza;Jerubella J. Abelilla;Hans H. Stein
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1568-1577
    • /
    • 2023
  • Objective: A study was conducted to determine the chemical composition of banana meal and rice bran from Australia or South-East Asia and test the hypothesis that there are no differences in rice bran produced in different countries, but there are differences between full-fat and defatted rice bran. Methods: Two sources of banana meal and 22 sources of rice bran (full-fat or defatted) from Australia or South-East Asia were used. All samples were analyzed for dry matter, gross energy, nitrogen, amino acids (AA), acid hydrolyzed ether extract (AEE), ash, minerals, total starch, insoluble dietary fiber, and soluble dietary fiber. Banana meal was also analyzed for sugars including glucose, fructose, maltose, sucrose, stachyose, and raffinose. Results: Chemical analysis demonstrated that banana meal from the Philippines is primarily composed of starch. Full-fat rice bran from Australia had greater (p<0.05) concentrations of AEE, lysine, and glycine than samples from the Philippines and Vietnam. Full-fat rice bran from Australia and Thailand had greater (p<0.05) concentrations of gross energy and most AA than rice bran from Vietnam. Full-fat rice bran from Australia had greater (p<0.05) concentrations of tryptophan and manganese than all other sources, but full-fat rice bran from the Philippines contained less (p<0.05) zinc than all other sources of rice bran. Gross energy, AEE, and copper were greater (p<0.05) in full-fat rice bran compared with defatted rice bran, but defatted rice bran contained more (p<0.05) crude protein, ash, insoluble dietary fiber, total dietary fiber, AA, and some minerals than full-fat rice bran. Conclusion: Banana meal is a high-energy source that can be used as an alternative ingredient in livestock diets. Full-fat rice bran from Australia and Thailand contained more concentrations of AEE and AA than samples from the Philippines or Vietnam. Full-fat rice bran had more gross energy and AEE than defatted rice bran, whereas defatted rice bran contained more crude protein, ash, and total dietary fiber.

The Chemoprotective Effect of Fermented Rice Bran on Doxorubicin Induced Toxicity in the Rat

  • Lee, Keyong Ho;Rhee, Ki-Hyeong;Cho, Choa Hyung
    • Natural Product Sciences
    • /
    • v.20 no.1
    • /
    • pp.29-32
    • /
    • 2014
  • In the present study, we examined the chemoprotective effects of different rice bran, which are produced by fermentation or not, on doxorubicin induced rat model, and detected the change of components of rice bran. Rats receiving fermented rice bran of 100 mg/kg by oral plus doxorubicin 10 mg/kg had greater weight gain as +24% than that observed with doxorubicin alone. In case of the treatment of non-fermented rice bran of 100 mg/kg by oral with doxorubicin of 10 mg/kg, fermented rice bran showed a -1.3% decrease in body weight. 100 mg/kg fermented rice bran decreased the incidence to 30%, and non-fermented rice bran decreased the incidence to 50%. In lethality, the rate of death of doxorubicin was 60%. 100 mg/kg fermented rice bran decreased to 10% in death rate and non-fermented rice bran to 30%. In gross gastrointestinal pathology, doxorubicin showed the gross gastrointestinal mucosal pathology in 70% of treated rats, fermented rice bran decreased to 40% and non-fermented rice bran to 50%. In the change of constituent, xylose concentration of fermented rice bran was detected to 59.33 mg/g while its concentration of non-fermented rice bran was 11.12 mg/g.

Removal of Pesticide Residues in Rice Bran Oil by Refining Process (미강유의 정제과정중 잔류농약의 감소)

  • 이철원;신효선
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.2
    • /
    • pp.89-97
    • /
    • 1996
  • This study was carried out to determine the pesticide residues in rice bran, crude rice bran oil and the oil of various stages of refining process. Each samples were analyzed for 41 pesticide residues by multiclass multiresidue methods with GC-ECD, NPD and identified by GC-MSD. Rice bran were detected cypermethrin, diazinon, dichlofluanid, and its level were ranged from 0.01~0.122 ppm. Crude rice bran oil were detected cypermethrin, diazinon, dichlofluanid, dimethoate, etrimfos, flucythrinate, and its level were ranged from 0.015~0.654 ppm Crude rice bran oil has the higher level of pesticide residues and more varieties of pesticides than rice bran. But pesticide residues in the crude rice bran oil was found to be almost removed then pigment was decolorized by absorption using active carbon and clealy removed by thermolysis for deodorization.

  • PDF

A Study on Characteristics of Exhaust Emissions in a Diesel Engine with Improved Rice Bran Oils as a Fuel (디젤기관에 있어서 개선 미강유 연료의 배기 배출물 특성에 관한 연구)

  • 배명환;하정호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.12-23
    • /
    • 2004
  • The effects of improved rice bran oil on the characteristics of exhaust emissions have been experimentally examined by a single cylinder, four cycle, direct injection, water-cooled agricul-tural diesel engine operating at several loads and speeds. The experiments are conducted with light oil, rice bran oil, and improved rice bran oil as a fuel. The fuel injection timing is fixed to 22$^{\circ}$ BTDC regardless of fuel types, engine loads and speeds. To reduce the viscosity of rice bran oil, it is used with the methods of heating, methyl ester and ultrasonic system in a highly viscous rice bran oil. In this study, it is found that the brake specific fuel consumption rate of light oil is the lowest and that of improved rice bran oils is lower than that of pure rice bran oil, and NO$_{x}$ emissions of light oil are the lowest and those of pure rice bran oil are the high- est, while soot emissions of light oil are the highest and those of pure and improved rice bran oils are lower than that of light oil. However these results are not amply satisfied with the emissions regulation limit using the pure and improved rice bran oil as fuels in diesel engines.s.

Quality Characteristics of Muffin Added with Rice Bran Powder (미강을 첨가한 머핀의 품질 특성)

  • Jang, Kyung-Hee;Kang, Woo-Won;Kwak, Eun-Jung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.4
    • /
    • pp.543-549
    • /
    • 2012
  • Muffins were prepared with different amounts of rice bran powder (0~30%), and their quality characteristics were investigated. The specific gravity of batters increased with increasing rice bran. While the initial pasting temperature increased with increasing rice bran amount, peak viscosity and viscosity at $95^{\circ}C$ after 15 min gradually decreased. The pH value of batters and muffins decreased with increasing rice bran amount. Moisture content of muffins was affected by the addition of rice bran powder. The lightness and yellowness values of muffins decreased with increasing rice bran amount, whereas redness value increased. For textural characteristics, hardness, gumminess and chewiness of muffins significantly increased with increasing rice bran amount, whereas cohesiveness and springiness decreased. Aircell uniformity of muffins became larger and more random as rice bran powder content increased. In the sensory evaluation, scores of taste and texture were the highest in muffin added with 5% rice bran powder. Overall acceptability was highest in control and the 5% group without any significant difference. Values of color, flavor, taste, texture and overall acceptability of muffins tended to decrease as rice bran powder content increased.

Properties of Biodegradable Films Produced from Rice Bran and Roasted Sesame Meal through Chemical Modifications

  • Bae, Dongho;Kim, Woo Jung;Jang, In Sook
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.79-85
    • /
    • 2000
  • Biodegradable films were prepared from roasted sesame meal and rice bran. Acetic anhydride, succinic anhydride, and formaldehyde were added to the film-forming solutions, and their effects on tensile strength, percent elongation, water vapor permeability, and water solubility of the films were studied. Roasted sesame meal did not form film without acylation or addition of formaldehyde. Acylated roasted sesame films had higher tensile strength and water-solubility, and lower % elongation than rice bran films. Acylation with acetic and succinic anhydrides increased tensile strength, percent elongation, and water solubility of rice bran films, but decreased water vapor permeability. Treatment with formaldehyde increased tensile strength of roasted sesame and rice bran films and % elongation of rice bran films, while reducing water-solubility of roasted sesame and rice bran films and water vapor permeability of rice bran films.

  • PDF

Exhaust Emissions Characteristics of an Agricultural Diesel Engine with Improved Rice Bran Oil Fuels (개선 미강유 연소에 의한 농용 디젤기관의 배기 배출물 특성)

  • 배명환;하정호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.55-60
    • /
    • 2000
  • The effects of improved rice bran oil on the characteristics of exhaust emissions have been experimentally examined by a single cylinder, four cycle, direct injection, water-cooled and agricultural diesel engine operating at several loads and speeds. The experiments are conducted with light oil rice bran oil, and improved rice bran oil as a fuel. The fuel injection timing is fixed to 22$^{\circ}$BTDC regardless of fuel type, engine loads and speeds. To reduce the viscosity of rice bran oil, it is used with the methods of heating, methyl ester and ultrasonic system in a highly viscous rice bran oil. In this study, it is found that the brake specific fuel consumption rate of light oil is the lowest and that of improved rice bran oil is lower than that of pure rice bran oil, and NOx emissions of light oil are the lowest and those of pure rice bran oil are the highest, but soot emissions of light oil are the highest. However these results are not amply satisfied with the emissions regulation limit using the pure and improved rice bran oil as a fuel in diesel engines.

  • PDF

Effect of Feeding Cyanidin 3-glucoside (C3G) High Black Rice Bran on Nutrient Digestibility, Blood Measurements, Growth Performance and Pork Quality of Pigs

  • Kil, D.Y.;Ryu, S.N.;Piao, L.G.;Kong, C.S.;Han, S.J.;Kim, Y.Y
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1790-1798
    • /
    • 2006
  • Two experiments were conducted to investigate the effect of feeding cyanidin 3-glucoside (C3G) high black rice bran on nutrient digestibility, blood measurements, growth performance and pork quality of pigs. In Exp. I, a total of fifteen pigs (19.91${\pm}$1.80 kg, average initial body weight) were used in assay of nutrient digestibility and blood measurements. All pigs were allotted to 5 treatments with 3 replicates according to a completely randomized design (CRD) in an individual metabolic crate. Treatments included 1) CON: basal diet, 2) BRB-2: basal+brown rice bran 2%, 3) BRB-4: basal+brown rice bran 4%, 4) CRB-2: basal+C3G high black rice bran 2% and 5) CRB-4: basal+C3G high black rice bran 4%. The digestibility of dry matter (DM), crude protein (CP), crude fat (CF), crude ash (CA) and crude fiber (CF) was not affected by dietary treatments. Serum triglyceride (TG) and high density lipoprotein (HDL) cholesterol concentrations were not affected by addition of C3G high black rice bran. However, at the end of experiment, pigs fed rice bran showed decreased tendency in total cholesterol concentration. Especially pigs fed C3G high black rice bran showed significantly lower total cholesterol concentration compared to pigs fed brown rice bran (p<0.03). There was numerically lower total cholesterol concentration with increasing levels of black rice bran in the diet. In terms of serum glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT), there were no significant differences among treatments, even though pigs fed CRB-4 showed the lowest GOT concentration compared to other pigs. In Exp. II, sixteen finishing pigs (average initial body weight 89.96${\pm}$0.35 kg) were divided into 4 treatments to investigate the effect of feeding C3G high black rice bran on growth performance and pork quality. There were no significant differences in average daily gain (ADG), average daily feed intake (ADFI) and feed conversion ratio (FCR) among the treatments. Pigs fed C3G high black rice bran showed numerical decrease in ADG and increase in FCR while not effecting feed intake. There was no significant difference in live weight, carcass weight, carcass rate, backfat thickness and carcass grade. However, pigs fed C3G high black rice bran tended to show lower backfat thickness than pigs fed basal diet. Pigs fed C3G high black rice bran showed a tendency of decreased TBA value than pigs fed basal diet, although there was no overall significant difference among treatments. In conclusion, nutrient digestibility, blood measurements, growth performance and pork quality were not significantly affected by feeding C3G high black rice bran to pigs. However, C3G high black rice bran might have an effect on lowering serum total cholesterol and decrease the TBA value in pork compared to control group and these effects might be due to high concentration of antioxidative compounds in C3G high black rice bran.

A study on the development of high functional food protein ingredient from rice bran (고기능성 쌀단백질 소재 개발 연구)

  • Lee, Eui-Suk;Kim, Ki-Jong;Kim, Jae-Hyeon;Hong, Soon-Taek
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • Rice bran proteins from different cultivars(Youngan, Sindongjin, Suwon 511) were extracted with Xylanase using orthogonal analysis method and their functional properties were investigated. The optimum extraction conditions, based on protein content in the extract found to be at 1 wt% xylanase, pH 7 and 50:1, solvent to rice bran ratio(v/w %). Nitrogen solubility indices(NSI) of rice bran protein concentrates were shown a minimum value at pH 4 ranged 2~23%, varied with different cultivars and a maximum (NSI${\geq}$90% for all cultivars) at pH 10. As for water adsorption and fat adsorption capacity, rice bran protein concentrates were shown to be better than Na-caseinate and isolated soy protein, respectively. Emulsifying activities were observed high in order of Na-caseinate>Youngan rice bran protein>Shindongjin rice bran protein>Suwon 511 rice bran protein>isolated soy protein. In general, the surface tension of rice bran protein solution($10^{-3}$ wt%, 5 mM bis-tris, pH 7) was increased with increasing concentrations and found a minimum value near pI. On heating, it was decreased slightly with increasing temperatures up to $70^{\circ}C$ and then increased above $80^{\circ}C$. Addition of sodium chloride was made the surface tension decrease. In conclusion, with Xylanase, rice bran protein concentrate can be successfully extracted from the rice bran of different cultivars and the Youngan rice bran protein was thought to have best functionality among rice cultivars tested. It might be used as a milk protein substitute.

Effect on Rice Growth and Change of Inorganic Nitrogen Content in Soil by Application with Rice Bran and Mixed Expeller Cake Fertilizer on Machine Transplanting Rice Paddy Field

  • Kim, S.;Yang, C.H.;Lee, S.B.;Lee, J.H.;Kim, J.D.;Kim, S.J.;Im, I.B.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.157-160
    • /
    • 2011
  • This study was conducted to find a method using the application of rice bran and mixed expeller cake at machine transplanting rice paddy field. Different ratios of rice bran and mixed expeller cake were sprayed as substitute of chemical fertilizer (nitrogen 90kg $ha^{-1}$) before transplanting. Nitrogen content was highest in 30th day after transplantation, and in relation to treatments the order was the following: Rice bran 1,000kg $ha^{-1}$ + Mixed expeller cake 1,374kg $ha^{-1}$ > rice bran 2,000kg $ha^{-1}$ + Mixed expeller cake 948kg $ha^{-1}$ > rice bran 3,000kg $ha^{-1}$ + Mixed expeller cake 522kg $ha^{-1}$. Number of panicle and spikelets per $m^{-2}$ was higher in rice bran 1,000kg $ha^{-1}$ + Mixed expeller cake 1,374kg $ha^{-1}$ and rice bran 2,000kg $ha^{-1}$ + Mixed expeller cake 948kg $ha^{-1}$ than in rice bran 3,000kg $ha^{-1}$ + Mixed expeller cake 522kg $ha^{-1}$ and the yields was the highest in rice bran 1,000kg $ha^{-1}$ + Mixed expeller cake 1,374kg $ha^{-1}$.