• Title/Summary/Keyword: rigid body

Search Result 898, Processing Time 0.031 seconds

Improving Accuracy of Measurement of Rigid Body Motion by Using Transfer Matrix (전달 행렬을 이용한 강체 운동 측정의 정확도 개선)

  • 고강호;국형석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.253-259
    • /
    • 2002
  • The rigid body characteristics (value of mass, Position of center of mass, moments and products of inertia) of mechanical systems can be identified from FRF data or vibration spectra of rigid body motion. Therefore the accuracy of rigid body characteristics is connected directly with the accuracy of measured data for rigid body motions. In this paper, a method of improving accuracy of measurement of rigid body motion is presented. Applying rigid body theory, ail translational and rotational displacements at a tentative point on the rigid body are calculated using the measured translational displacements for several points and transfer matrix. Then the estimated displacements for the identical points are calculated using the 6 displacements of the tentative Point and transfer matrix. By using correlation coefficient between measured and estimated displacements, we can detect the existence of errors that are contained in a certain measured displacement. Consequently, the improved rigid body motion with respect to a tentative point can be obtained by eliminating the contaminated data.

  • PDF

Identification of Rigid Body Properties of the Mounted Structure with Improved Mass-Lines from Impact Hammer Tests (탄성지지된 구조물의 충격 햄머 실험에서 질량선의 개선을 통한 향상된 강체 특성 규명법)

  • Ahn, Se-Jin;Jeong, Weui-Bong;Hwang, Dae-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.317-322
    • /
    • 2002
  • There are many researches to identify the rigid body properties from the mass-line obtained by impact hammer testing. The correct rigid body properties of the structure may be estimated if the mass-line of the structure could be obtained exactly. When the structure is mounted by elastic materials, the mass-line cannot be read correctly from the impulse response spectrum. The reason is due to the effects of rigid body modes of mounted structure. In this paper, the effects of rigid body modes of mounted structure to the mass-line are discussed and the method to remove these effects is also presented.

  • PDF

Predict the engine Acceleration by Analyzing the Rigid Body Motion (강체 운동 해석을 통한 엔진의 가속도 예측)

  • Kim, Byung-Hyun;Park, Jong-Ho;Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.351-356
    • /
    • 2011
  • Some materials show the character of rigid body in low frequency spectrum. The rigid body motions are consisted of translational and rotational motions. Especially, we can get the acceleration or displacement of a random point in the rigid body by analyzing rigid body transfer matrix at the car's engine and power train. Actually it is difficult to measure the acceleration by attaching the sensor inside of the engine and power train. So the hard to predict acceleration data can be achieved attaching the sensor on the outside of the engine and power train by analyzing the data of rigid body motion which the engine is operated using dynamo. Also this paper will show the change of predicted data and accuracy variation by not using all the measured data but a few exceptions of the point number.

  • PDF

Real-Time Rigid body Simulation By Using Timewarp for Computer Game (컴퓨터 게임을 위한 실시간 Timewarp Rigid body 시뮬레이션)

  • 민성환;김창헌
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.523-525
    • /
    • 2001
  • 본 논문은 많은 수의 rigid body 물체들을 물리학에 기반하여 실시간으로 애니메이션하는 방법을 제안한다 rigid body 물체들의 움직임을 생성해내는 과정은 상당한 시간이 소요되며 또한 물체의 수가 증가함에 따라 계산시간이 급증한다. 본 논문에서는 Timewarp rigid body 시뮬레이션 알고리즘을 실시간 애니메이션에 적용하기 위해 시간당 생성되는 프레임 수에 따른 다단계 롤백 범위 적용을 하는 방법을 제안하고 실험을 통하여 시뮬레이tus 시스템의 효율성을 보인다.

  • PDF

Application of Perturbation Method to the Dynamic Analysis of Free-free Beam (자유-자유보의 동적해석에 대한 섭동법의 적용)

  • Kwak, Moon-K
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.46-52
    • /
    • 2005
  • This paper is concerned with the application of perturbation method to the dynamic analysis of free-free beam. In general, the rigid-body motions and elastic vibrations are analyzed separately. However, the rigid-body motions cause vibrations and elastic vibrations also affect rigid-body motions in turn, which indicates that the rigid-body motions and elastic vibrations are coupled in nature. The resulting equations of motion are hybrid and nonlinear. We can discretize the equations of motion by means of admissible functions but still we have to cope with nonlinear equations. In this paper, we propose the use of perturbation method to the coupled equations of motion. The resulting equations consist of zero-order equations of motion which depict the rigid-body motions and first-order equations of motion which depict the perturbed rigid-body motions and elastic vibrations. Numerical results show the efficacy of the proposed method.

The Identification of Rigid Body Properties with Improved Mass-Lines from Impact Hammer Tests of The Mounted Structure (탄성지지된 구조물의 충격 햄머 실험에서 질량선의 개선을 통한 향상된 강체 특성 규명법)

  • Ahn, Se-Jin;Jeong, Weui-Bong;Hwang, Dae-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.336.2-336
    • /
    • 2002
  • There are many researches to identify the rigid body properties from the mass-line obtained by impact hammer testing. The correct rigid body properties of the structure may be estimated if the mass-line of the structure could be obtained exactly. When the structure is mounted by elastic materials, the mass-line cannot be read correctly from the impulse response spectrum. The reason is due to the effects of rigid body modes of mounted structure. (omitted)

  • PDF

Application of Perturbation Method to the Dynamic Analysis of Free-free Beam (자유-자유보의 동적해석에 대한 섭동법의 적용)

  • Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.300-306
    • /
    • 2004
  • This paper is concerned with the application of perturbation method to the dynamic analysis of free-free beam. In general, the rigid-body motions and elastic vibrations are analyzed separately. However, the rigid-body motions cause vibrations and elastic vibrations also affect rigid-body motions in turn, which indicates that the rigid-body motions and elastic vibrations are coupled in nature. The resulting equations of motion are hybrid and nonlinear. We can discretize the equations of motion by means of admissible functions but still we have to cope with nonlinear equations. In this paper, we propose the use of .perturbation method to the coupled equations of motion. The resulting equations consist of zero-order equations of motion which depict the rigid-body motions and first-order equations of motion which depict the perturbed rigid-body motions and elastic vibrations. Numerical results show the efficacy of the proposed method.

  • PDF

Enhanced generalized modeling method for compliant mechanisms: Multi-Compliant-Body matrix method

  • Lim, Hyunho;Choi, Young-Man
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.503-515
    • /
    • 2022
  • The multi-rigid-body matrix method (MRBMM) is a generalized modeling method for obtaining the displacements, forces, and dynamic characteristics of a compliant mechanism without performing inner-force analysis. The method discretizes a compliant mechanism of any type into flexure hinges and rigid bodies by implementing a multi-body mass-spring model using coordinate transformations in a matrix form. However, in this method, the deformations of bodies that are assumed to be rigid are inherently omitted. Consequently, it may yield erroneous results in certain mechanisms. In this paper, we present a multi-compliant-body matrix-method (MCBMM) that considers a rigid body as a compliant element, while retaining the generalized framework of the MRBMM. In the MCBMM, a rigid body in the MRBMM is segmented into a certain number of body nodes and flexure hinges. The proposed method was verified using two examples: the first (an XY positioning stage) demonstrated that the MCBMM outperforms the MRBMM in estimating the static deformation and dynamic mode. In the second example (a bridge-type displacement amplification mechanism), the MCBMM estimated the displacement amplification ratio more accurately than several previously proposed modeling methods.

Dynamic Analysis of a Cantilever Beam Undertaking Impulsive Force That Undergoes Rigid Body Motion (강체 운동을 고려한 충격을 받는 외팔 보의 동적 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.890-895
    • /
    • 2005
  • This paper presents the dynamic analysis of a cantilever beam undertaking impulsive force that undergoes rigid body motion. The transient response of the beam induced by the impulsive force and the rigid body motion is calculated based on hybrid deformation variable modeling method by applying the Rayleigh-Ritz assumed mode method. The stiffness variation effect caused by the rigid body motion is considered in this modeling. The effects of the impulsive force position and the angular velocity on the transient responses of the beam are investigated through numerical studies.

  • PDF

Estimation of Vibration Level Inside an Engine Based on Rigid Body Theory and Measurement Technology (강체 운동 해석 및 실험을 통한 엔진 내부 진동 예측에 관한 연구)

  • Kim, Byung-Hyun;Park, Jong-Ho;Kim, Eui-Yeol;Lee, Sang-Kwon;Kim, Tae-Jeong;Heo, Jeong-Ki
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1043-1050
    • /
    • 2011
  • This paper presents practical results for the estimation of vibration level inside a powertrain based on the rigid body theory and measurement. The vibration level of inside powertrain has been used for the calculation of excitation force of an engine indirectly. However it was difficult to estimate or measure the vibration level inside of a powertrain when a powertrain works on the driving condition of a vehicle. To do this work, the rigid body theory is employed. At the first, the vibration on the surface of a powertrain is measured and its results are secondly used for the estimation the vibration level inside of powertrain together with rigid body theory. Also did research on how to decrease the error rate when the rigid body theory is applied. This method is successfully applied to the estimation of the vibration level on arbitrary point of powertrain on the driving condition at the road.