• Title/Summary/Keyword: ring-type baffle

Search Result 4, Processing Time 0.02 seconds

Dynamic Suppression Effects of Liquid Container to the Baffle Number and Hole Diameter (배플개수 및 내경변화에 따른 액체 저장탱크의 동억제 효과)

  • 조진래;김민정;이상영;허진욱
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.147-154
    • /
    • 2002
  • The dynamic load caused by sloshing of internal fluid severely affects the structural and control stabilities of cylindrical liquid containers accelerating vertically. If the sloshing frequency of fluid is near the frequency of control system or the tank structure, large dynamic force and moment act on launching vehicles. For the suppression of such dynamic effects, generally flexible ring-type baffles are employed. In this paper, we perform the numerical analysis to evaluate the dynamic suppression effects of baffle. The parametric analysis is performed with respect to the baffle inner-hole diameter and two different baffle spacing types : equal spacing with respect to the tank and one with respect to the fluid height. The ALE (arbitrary Lagrangin-Eulerian) numerical method is adopted for the accurate and effective simulation of the hydrodynamic interaction between fluid and elastic structure.

Dynamic Response Analysis of Baffled Fuel-Storage Tank in Turnaround Motion (선회운동에 따른 배플형 연료탱크의 동응답 해석)

  • 조진래;홍상일;김민정
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.77-86
    • /
    • 2003
  • Dynamic response of baffled fuel-storage tank in turnaround motion is simulated using the ALE finite element method. Fuel-storage tank undergoes abrupt impact load caused by inertia force of internal fuel in turnaround motion. Also, large dynamic force and moment caused by this load influence structural stability and control system. In this paper, ring-type baffles are adopted to suppress the dynamic influence. Through the parametric analysis with respect to the baffle number and location, the effects of baffle on the dynamic response of baffled fuel-storage tank is analyzed. The ALE finite element method is adopted for the accurate and effective simulation of the hydrodynamic interaction between fluid and structure.

Simulation of the Hydrogen Conversion Rate Prediction for a Solar Chemical Reactor (태양열 화학반응기의 수소전환효율 예측 시뮬레이션)

  • Ko, Jo-Han;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.294-299
    • /
    • 2008
  • Steam reforming of methane is the most wide spread method for hydrogen production. It has heed studied more than 60 years. methane reforming has advantages in technological maturity and economical production cost. Using a high-temperature solar thermal energy is an advanced technology in Steam reforming process. The synthesis gas, the product of the reforming process, can be applied directly for a combined cycle or separated for a hydrogen. In this paper, hydrogen conversion rate of a solar chemical reactor is calculated using commercial CFD program. 2 models are considered. Model-1 is original model which is designed from the former researches. And model-2 is ring-disk set of baffle is inserted to enhance the performance. The solar chemical reactor has 3 inlet nozzle at the bottom of the side wall near quartz glass and an exit is located at the top. Methane and steam is premixed with 50:50 mole fraction and goes into the inside. Passing through the porous media, the reactants are conversed into hydrogen and carbon monoxide.

  • PDF

Methane-Steam Reforming Simulation for a High Temperature Solar Chemical Reactor (고온 태양열 화학 반응기에서의 메탄-수증기 개질반응 시뮬레이션)

  • Ko, Jo-Han;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Steam reforming of methane in the high temperature solar chemical reactor bas advantage in its heating method. Using concentrated solar energy as a heating source of the reforming reaction can reduce the $CO_2$ emission by 20% compared to hydrocarbon fuel. In this paper, the simulation result of methane-steam reforming on a high temperature solar chemical reactor(SCR) using Fluent 6.3.26 is presented. The high temperature SCR is designed for the Inha Dish-1, a Dish type solar concentrator installed in Songdo city. Basic SCR performance factors are referred to the former researches of the same laboratory. Inside the SCR porous metal is used for a receiver/reactor. The porous metal is carved like a dome shape on the incident side to increase the heat transfer. Also, ring-disc set of baffle is inserted in the porous metal region to increase the path length. Numerical and physical models are also used from the former researches. Methane and steam is mixed with the same mole fraction and injected into the SCR. The simulation is performed for a various inlet mass flow rate of the methane-steam mixture gas. The result shows that the average reactor temperature and the conversion rate change appreciably by the inlet mass flow rate of 0.0005 kg/s.