• Title/Summary/Keyword: river rehabilitation

Search Result 55, Processing Time 0.039 seconds

Research on the method used to select an adequate rehabilitation plan for Natural River based on the river's degree of naturalness (하천자연도를 이용한 자연형하천 대안 선정기법)

  • Cho, Hong-Je;Yoon, Jong-Chun
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.71-80
    • /
    • 2009
  • Due to the various characteristics of urban river, rehabilitation project for natural river requires distinct alternative approach and selection method for each different types of river. In this study, naturalness of a river was used to establish such alternative for the business and rehabilitation plan for natural river. To assess the naturalness of a river, through AHP, designed to fit the environmental conditions in Korea, was employed. Furthermore, a method that conveniently compares and selects an alternative for rehabilitation plan for natural river by referencing Urban River Basin Enhancement Methods (URBEM) was proposed. After selecting the evaluation items for assessing the naturalness of the river based on the characteristics of the river, multiple alternatives were constructed and the naturalness of river for each of those alternatives were estimated. Comparing the estimated values has made the measurement of the natural recovery effect and the product of river rehabilitation plan for each alternative efficient. In conclusion, selecting the items for evaluating the naturalness of a river with respect to its characteristics was found to be effective for establishing the rehabilitation plan for natural river.

  • PDF

Application of Eco-hydraulics Principles in Rehabilitation of Urban River System

  • Meiyan, Feng;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.446-446
    • /
    • 2018
  • The urban rivers have unique hydraulic characteristics between natural rivers and artificial canals. These hydraulic characteristics determine the characteristics of urban rivers with small environmental capacity and fragile ecosystems. With the development and utilization of natural resources, the pollutants that have been produced enter the river through different channels, which seriously damages the urban river ecosystem. Therefore, how to restore contaminated water to a normal state and reproduce a natural, self-regulating ecosystem is one of the most concerned issues in recently. Eco-hydraulics is a cross-disciplinary subject of hydraulics biology and ecology. It is closely related to the protection of rivers, wetlands, and ecological self-repair. In this study, The basic principle of eco-hydraulics is concisely described and its approaches to protection and rehabilitation of river are introduced. The conception of establishing gardenesque eco-pond for urban use is suggested. The strategies including changing the hydrodynamic features of rivers, adjusting the breeds and species and constructing the gardenesque eco-pond for improving the exist ing urban rivers are proposed. It provides scientific information and guidance for the restoration of rivers and wetlands by studying the close relationship between river hydraulic characteristics, currents, and rivers and ecosystems.

  • PDF

Study on the Revegetation Methods of Phragmites japonica, Miscanthus sacchariflorus, Themeda triandra and pennisetum alopecuroides for the Rehabilitation of Close-to-Nature River (자연형 하천 식생복원을 위한 달뿌리풀, 물억새, 솔새, 수크령의 녹화방법에 관한 연구)

  • Choi, Guei-Chang;Kim, Nam-Choon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.2
    • /
    • pp.70-77
    • /
    • 1999
  • This study was carried out to suggest an effective method for the rehabilitation of Close-to-Nature River and artificial wetland. The results on the revegetation methods by seeding and sodding of Phragmites japonica, Miscanthus sacchariflorus, Themeda triandra, and Pennisetum alopecuroides were summarized as follows. Seed germination of Phragmites japonica was 76.3% at $30^{\circ}C$, that of Miscanthus sacchariflorus was 68.7% at $20^{\circ}C$, that of Themeda triandra germinated 52.3% at $25^{\circ}C$, $30^{\circ}C$ constant temperature and that of Pennisetum alopecuroides germinated 86.7% at $30^{\circ}C/20^{\circ}C$ alternating temperature. Seed germination of Pennisetum alopecuroides exceeded 80% at $20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$ constant temperature and $25^{\circ}C/15^{\circ}C$ alternating temperature. At 60 days after seeding, the ground coverage of Phragmites japonica, Miscanthus sacchariflorus, Themeda triandra, and Pennisetum alopecuroides reached 81%, 81 %, 74%, and 86% respectively in the soil media of vermiculite and peatmoss(1 : 1 by volume). In the results of sod experiment, Phragmites japonica, Miscanthus sacchariflorus, Themeda triandra, and Pennisetum alopecuroides were formed sod completely in soil composition type of vermiculite and peatmoss(1 : 1, v/v). Thus this media seems to be best sad production media for rehabilitation works of Close-to-Nature River and man-made wetlands. Phragmites japonica and Miscanthus sacchariflorus were not significantly different in shoot height and the number of tillers by different planting distance for the first one year of experiment. Pennisetum alopecuroides shows high possibility to be used for Close-to-Nature River rehabilitation works by seeding.

  • PDF

A Study on the Ecological Rehabilitation Plan for Urban Stream - Focused on Suam Stream in Anyang City - (도시하천의 생태적 재생계획에 관한 연구 - 안양시 수암천을 대상으로 -)

  • Choi, Jung-Kwon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.133-144
    • /
    • 2010
  • The objective of this planning proposal is to rehabilitate the urban stream which has been ecologically disturbed in the urban process. The experimental stream, Su-am stream located in Anyang City is typical urban stream in adjacent land use and the spatial condition. The stream in the watershed context, is the second tributary of Han River, in the Anyangcheon watershed. The Characteristics of the stream reach were analyzed by the river corridor survey. In the conceptual phase, Rehabilitation Programs were established based on the hydrological, ecological and spatial characteristics of the stream. Spatial zoning concept according to the characteristics of the stream and adjacent land use, was suggested 4 types of zoning; ecological preservation zone, natural landscape zone, neighborhood water-friendly zone and CBD water-friendly zone. Implementation Practices can be summarized as follow: For The longitudinal river continuum, some In-stream practices were suggested and implemented; such as channel alignment, step & pool, pool & riffle and low-flow channel bank. For latitudinal continuum and intimate spatial relationship between Sam-duk Park & Su-am stream, gentle sloped bank was planned and implemented. After stream improvement & ecological Implementation, follow-up monitoring and adaptive management programs will be a meaningful process for ecological rehabilitation.

A Study for the Calculation of Instream Flow in the Rehabilitation of Urban stream (도심하천 복원에 따른 하천유지유량 산정 연구)

  • Choi, Gye Woon;Chang, Yun Gyu;Han, Man Sin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.448-452
    • /
    • 2004
  • Instream flow is necessary to manage the basic function of the rivers. The evaluation method of instream flow in a big river has been studied widely. However, the study in a urban hasn't researched. In theses days the environmental function of a river becomes very important. The evaluation method and secure of instream flow are basic conditions to perform it. Especially view of stream, recreation, protection of ecology are highly demanded In a urban according to the multipurpose of river spaces. In this paper the evaluation methods of instream flow were compared and investigated with many papers. This paper presents a proper evaluation procedure of instream flow in a urban stream through comparison and examination. According to the demanded hydraulic conditions the method can be considered the environmental function depend on the purpose of river restoration. The relationship of the coefficient of roughness and the slope of the river bed were examinated in order to estimate the minimum instream flow corresponding to proper Hydraulic conditions. Also calculate the instream flow of Sueng-gi stream in In-cheon.

  • PDF

A Study on the Conservation Rehabilitation and Creation of Naturalilty of Rivers - River Vegetation Structure of Wonsungcheon and Pungseocheon (하천에 있어서 자연성의 보전, 정비, 창출에 관한 연구 II - 원성천과 풍서천의 하천식생구조를 대상으로 -)

  • Bang, Kwang-Ja;Lee, Jin-Hee;Sul, Jong-Ho;Kang, Hyun-Kyung;Park, Sung-Eun
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.53-64
    • /
    • 1998
  • This study was performed to build up the ecological guidelines to grasp the structure of the vegetation change which is due to river rehabilitation. Anyway, river ecosystem and function has been destroyed owing to river development. It is important that river vegetation supplies ecological corridor and biotope. Two survey sites(Wonsungcheon and Pungseocheon)were investigated in the aspect of plant ecosystem and structure to settle the practical concept of river ecosystem. Each survey site was subdivided to five plots. The site was surveyed through the belttransect method. Wonsungcheon gets more seriously polluted as it runs to the urban area. In other words, there are On the other hand, Pungseocheon has more naturality but its downstream is under the pressure of various wood plants in the upstream area, but downstream area is dominated by naturalized plants such as Bidens frondosa, Panicum dichotomiflorum, etc. Riverbank of downstream has been changed into farm and parking lot. development. It should be preserved definitely because it still has abundant naturality and wetland which formed a biotope. The objective of the research is to find out the river retrogression and maintenance methods based on the riparian vegetation structure. To manage the river ecologically, hydrophytes should be induced partly for natural purification after the riverside is rehabilitated. The vegetation should be induced step by step to restore natural river and steady monitoring and research are required.

  • PDF

Application and Improvement Plan of the Comprehensive Assessment for River Environments - Focusing on Tributary Streams of the Han River in Seoul - (하천환경종합평가의 적용 및 개선방안 - 서울시 한강 지류하천을 중심으로 -)

  • Ahn, Hong-Kyu;Lee, Sang-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.6
    • /
    • pp.441-452
    • /
    • 2020
  • The assessment of the river environment is widely applied as a method to establish the purpose and direction of river rehabilitation projects. This includes surveying and assessing the current state of the river environment and determining whether a previous river project was properly executed. The city of Seoul executed ecological river rehabilitation activities for the tributaries of the Han River from the 2000s following a masterplan to recover the physical shape and ecological functionality of damaged rivers. After the rehabilitation activities, the river environment had been changed substantially. In this study, physical properties, water quality properties, and ecological properties were assessed for 28 tributaries underthe control of the city of Seoul, and then those 3 properties were synthetically reassessed. From the result of the study on the physical properties, it was found that mostrivers had II-III grades. As for water quality properties, rivers had III-IV grades. The damaged rivers showed low grades of D-E based on the Aquatic Ecosystem Health evaluation. Accordingly, we concluded that all rivers of Seoul City have an unhealthy environment in terms of water quality and Aquatic Ecosystem Health, therefore it is regarded that long-term and systematic improvements are required.

Decision of River Rehabilitation Plan using Multi-criteria Decision Making (다기준 의사결정을 활용한 자연형 하천 대안 선정)

  • Cho, Hong-Je;Hwang, Jae-Ho;Yoon, Jong-Chun
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • River restoration plan and selection method are needed to reflect the diversity of river. Meanwhile, the ultimate purpose of river restoration is natural recovery of the river. Recently. hydrophilic enhancement is a tendency to include. In this study, naturalness of a river was used to establish alternative for the natural river recovery. Also, naturalness of a river calculated by using the evaluation of river naturalness that was developed using multi-criteria decision making to fit the environmental conditions in Korea. After selection the evaluation items for assessing the naturalness of the river based on the characteristics of the river, multiple alternatives were constructed and the naturalness of river for each of those alternatives were estimated. Comparing the estimated values has made the measurement of the natural recovery effect for each alternative efficient.

Hydraulic Application of Grass Concrete In River Environment (하천환경에서의 그라스콘크리트의 적용성 연구)

  • Jang, Suk-Hwan;Nam, Yong-Hyuk;Kim, Seo-Young;Park, Seong-Beom;Park, Ung-Seo;Park, Sang-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.472-477
    • /
    • 2006
  • This study aims at investigating the failure cases of the pre-cast block system in river environments which widely used nowadays and reviewing the effect and flow resistance for grass concrete structure through the physical experiments by hydraulic model test and developing application method in river slope or levee which has rigid flood resistance. Grass concrete structure has been independently tested under high velocity flow under the super critical condition, it survived the 8 m/sec maximum flow velocity. This results shows grass concrete system is also suited to use in aggressive river environments such as repairing a flood damaged embankment that had placed at risk the adjacent drainage channel with vegetation.

  • PDF