• 제목/요약/키워드: robot algorithm

검색결과 2,514건 처리시간 0.03초

로봇 경로 제어를 위한 속도기반 Dijkstra 알고리즘 (A Speed-Based Dijkstra Algorithm for the Line Tracer Control of a Robot)

  • 천성권;김근덕;김종근
    • 한국IT서비스학회지
    • /
    • 제10권4호
    • /
    • pp.259-268
    • /
    • 2011
  • A robot education system by emulation based on Web can be efficiently used for understanding concept of robot assembly practice and control mechanism of robot by control programming. It is important to predict the path of the line tracer robot which has to be decided by the robot. Shortest Path Algorithm is a well known algorithm which searches the most efficient path between the start node and the end node. There are two related typical algorithms. Dijkstra Algorithm searches the shortest path tree from a node to the rest of the other nodes. $A^*$ Algorithm searches the shortest paths among all nodes. The delay time caused by turning the direction of navigation for the line tracer robot at the crossroads can give big differences to the travel time of the robot. So we need an efficient path determine algorithm which can solve this problem. Thus, It is necessary to analyze the overhead of changing direction of robot at multi-linked node to determine the next direction for efficient routings. In this paper, we reflect the real delay time of directional changing from the real robot. A speed based Dijkstra algorithm is proposed and compared with the previous ones to analyze the performance.

Object Tracking Algorithm for a Mobile Robot Using Ultrasonic Sensors

  • Park, M.G.;Lee, M.C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.44.5-44
    • /
    • 2001
  • This paper proposes the algorithm which a mobile robot tracks the object captured by ultrasonic sensors of the robot and automatically generates a path according to the object In the proposed algorithm, a robot detects movements of the object as using ultrasonic sensors and then the robot follows the moving object. This algorithm simplifies robot path planning. The eight ultrasonic sensors on the robot capture distances between the robot and objects. The robot detects the movements of the object by using the changes of the distances captured by ultrasonic sensors. The target position of the robot is determined as the position of the detected moving object. The robot follows the object according to this movement strategy. The effectiveness of the proposed algorithm is verified through experiments.

  • PDF

점 배치 작업 시 제시된 로봇 비젼 제어알고리즘의 가중행렬의 영향에 관한 연구 (A Study on the Effect of Weighting Matrix of Robot Vision Control Algorithm in Robot Point Placement Task)

  • 손재경;장완식;성윤경
    • 한국정밀공학회지
    • /
    • 제29권9호
    • /
    • pp.986-994
    • /
    • 2012
  • This paper is concerned with the application of the vision control algorithm with weighting matrix in robot point placement task. The proposed vision control algorithm involves four models, which are the robot kinematic model, vision system model, the parameter estimation scheme and robot joint angle estimation scheme. This proposed algorithm is to make the robot move actively, even if relative position between camera and robot, and camera's focal length are unknown. The parameter estimation scheme and joint angle estimation scheme in this proposed algorithm have form of nonlinear equation. In particular, the joint angle estimation model includes several restrictive conditions. For this study, the weighting matrix which gave various weighting near the target was applied to the parameter estimation scheme. Then, this study is to investigate how this change of the weighting matrix will affect the presented vision control algorithm. Finally, the effect of the weighting matrix of robot vision control algorithm is demonstrated experimentally by performing the robot point placement.

Robot Fish Tracking Control using an Optical Flow Object-detecting Algorithm

  • Shin, Kyoo Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권6호
    • /
    • pp.375-382
    • /
    • 2016
  • This paper realizes control of the motion of a swimming robot fish in order to implement an underwater robot fish aquarium. And it implements positional control of a two-axis trajectory path of the robot fish in the aquarium. The performance of the robot was verified though certified field tests. It provided excellent performance in driving force, durability, and water resistance in experimental results. It can control robot motion, that is, it recognizes an object by using an optical flow object-detecting algorithm, which uses a video camera rather than image-detecting sensors inside the robot fish. It is possible to find the robot's position and control the motion of the robot fish using a radio frequency (RF) modem controlled via personal computer. This paper proposes realization of robot fish motion-tracking control using the optical flow object-detecting algorithm. It was verified via performance tests of lead-lag action control of robot fish in the aquarium.

오프라인 교시작업을 위한 통합 로봇제어시스템의 구현 (Integrated robot control system for off-line teaching)

  • 안철기;이민철;이장명;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.503-506
    • /
    • 1996
  • An integrated Robot control system for SCARA robot is developed. The system consists of an off-line programming(OLP), software and a robot controller using four digital signal processor(TMS32OC50). The OLP has functions of teaching task, dynamic simulator, three dimensional animation, and trajectory planning. To develop robust dynamic control algorithm, a new sliding mode control algorithm for the robot is proposed. The trajectory tracking performance of these algorithm is evaluated by implementing to SCARA robot(SM5 type) using DSP controller which has conventional PI-FF control algorithm. To make SCARA robot operate according to off-line teaching, an interface between OLP and robot controller in the integrated system is designed. To demonstrate performance of the integrated system, the proposed control algorithm is applied to the system.

  • PDF

Navigation algorithm of Mobile Robot for helping brain disease patient's gait rehabilitation

  • Cho, Young-Chul;Park, Tong-Jin;Park, Bum-Suk;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1781-1785
    • /
    • 2004
  • In existing factory, robot has less necessity that consider person. However, person should be considered at design and use of service robot. To service robot can be used in everyday life along with this, more functions are required. Specially, medical service robot needs function that is intelligence function. Especially, to help patient brain disease patient (cerebral hemorrhage, cerebral infarction, imbecility), gait assistance Mobile robot consider ergonomic element necessarily. In order to develop the medical support service robot, the ergonomic design should be considered. This robot ergonomic design parameters are treated in ("evelopment of Medical Support Service Robot Using Ergonomic Design" 2003, ICASS) Fig2 show this Robot. In this study, navigation algorithm of walk assistance robot is analyzed in ergonomic view. Navigation algorithm of Mobile robot can divide by two patterns. Traditional derivative method has shortcoming in dynamic environment. Reactive method is result that react excellently in dynamic environment. However, number of behavior function is limited. So hybrid navigation algorithm was proposed by the alternative way. We consider enough user specificity at navigation algorithm application of gait assistance robot.

  • PDF

Obstacle Avoidance Algorithm for a Network-based Autonomous Mobile Robot

  • Sohn, Sook-Yung;Kim, Hong-Ryeol;Kim, Dae-Won;Kim, Hong-Seok;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.831-833
    • /
    • 2004
  • In this paper, an obstacle avoidance algorithm is proposed for a network-based robot considering network delay by distribution. The proposed algorithm is based on the VFH(Vector Field Histogram) algorithm, and for the network-based robot system, in which it is assumed robot localization information is transmitted through network communication. In this paper, target vector for the VFH algorithm is estimated through the robot localization information and the measurement of its delay by distribution. The delay measurement is performed by time-stamp method. To synchronize all local clocks of the nodes distributed on the network, a global clock synchronization method is adopted. With the delay measurement, the robot localization estimation is performed by calculating the kinematics of the robot. The validation of the proposed algorithm is performed through the performance comparison of the obstacle avoidance between the proposed algorithm and the existing VFH algorithm on the network-based autonomous mobile robot.

  • PDF

2차원 경로상에서 이동물체에 대한 로봇의 회피 알고리즘 (Avoidance Algorithm of a Robot about Moving Obstacle on Two Dimension Path)

  • 방시현;원태현;이만형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.327-330
    • /
    • 1995
  • If a mobile robot is used in a real situation, robot must face a moving obstacles. In that case, the collision avoidance algorithm for moving obstacle is a indispensible element in mobile robot control. We csrried out a research to find and evaluate the advanced algorithm for mobile robot. At first we generate the continous path for mobi;e robot. Then by creating a curved path for avoidance, the mobile robot can change its path smoothly. Smoothed path made the robot adapt more effectively to the changing of path. Under time-varying condition, computer simulation was performed to show the validation of proposed algorithm.

  • PDF

Cooperative Behavior of Distributed Autonomous Robotic Systems Based on Schema Co-Evolutionary Algorithm

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권3호
    • /
    • pp.185-190
    • /
    • 2002
  • In distributed autonomous robotic systems (DARS), each robot must behave by itself according to its states ad environments, and if necessary, must cooperate with other robots in order to carry out their given tasks. Its most significant merit is that they determine their behavior independently, and cooperate with other robots in order to perform the given tasks. Especially, in DARS, it is essential for each robot to have evolution ability in order to increase the performance of system. In this paper, a schema co-evolutionary algorithm is proposed for the evolution of collective autonomous mobile robots. Each robot exchanges the information, chromosome used in this algorithm, through communication with other robots. Each robot diffuses its chromosome to two or more robots, receives other robot's chromosome and creates new species. Therefore if one robot receives another robot's chromosome, the robot creates new chromosome. We verify the effectiveness of the proposed algorithm by applying it to cooperative search problem.

캡스톤 디자인을 통한 3D Depth 센서 기반 HRI 시스템의 위치추정 알고리즘 연구 (A Study of Localization Algorithm of HRI System based on 3D Depth Sensor through Capstone Design)

  • 이동명
    • 공학교육연구
    • /
    • 제19권6호
    • /
    • pp.49-56
    • /
    • 2016
  • The Human Robot Interface (HRI) based on 3D depth sensor on the docent robot is developed and the localization algorithm based on extended Kalman Filter (EKFLA) are proposed through the capstone design by graduate students in this paper. In addition to this, the performance of the proposed EKFLA is also analyzed. The developed HRI system consists of the route generation and localization algorithm, the user behavior pattern awareness algorithm, the map data generation and building algorithm, the obstacle detection and avoidance algorithm on the robot control modules that control the entire behaviors of the robot. It is confirmed that the improvement ratio of the localization error in EKFLA on the scenarios 1-3 is increased compared with the localization algorithm based on Kalman Filter (KFLA) as 21.96%, 25.81% and 15.03%, respectively.