• Title/Summary/Keyword: rock slope

Search Result 770, Processing Time 0.032 seconds

A Study on the Stability Analysis of Rock Slope located near Andong-si (안동시 OO지역 암반사면의 안정해석에 관한 연구)

  • Park, Sung-Kwon;Kim, Ki-Bum;Jung, Dong-Young;Lee, Yoon-Gyu;Baek, Seung-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.561-564
    • /
    • 2008
  • Rock slope had been slope failure due to geological and physical things over time. In this paper, it discusses rock slope stability analysis which was concerned about additional slope failure located near the Andong-si. Initially, achieved basic geological investigation and field test about rock slope, examine the stability of rock slope by doing limit equilibrium method and stereographic projection about 5 slopes.

  • PDF

The Characteristice of Safety on a Slope of Pyroclastic Rock (화산쇄설암 사면의 안정 특성)

  • Kim, Byoung-Gon;Park, Sung-Kwon;Choi, Kil-Hyun;Baek, Seung-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.557-560
    • /
    • 2008
  • In this paper, it discusses about the stability of rock slope of pyroclastic rock, which can easily meet at construction site. Basically carry out the investigation about the development of a surface of discontinuity, too. With that, it refers to the basic groups of sedimentary rock, treats of general details about investigation of rock slope and stability analysis, and discusses general characteristics and stability analysis case study about rock slope of pyroclastic rock. Achieved basic geological investigation on rock slope of pyroclasic rock, and examine the stability of slope by doing limit equilibrium and geometric stability analysis due to the result of investigation. It is considered to be able to accumulate many data about slope design of pyroclastic rock hereafter estimating degrees of rock mass properties of pyroclastic rock quantitatively.

  • PDF

Design and Construction of Green Slope Fabric Form on Cutting Slope (절토사면의 Nailing 보강 Fabric Form의 설계와 시공)

  • 송재헌;최영근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.81-92
    • /
    • 2000
  • Green Slope(F.F.R : Fabric Form Reinforcement Method) is one of an environmental slope protection method at steep cutting sites. This method is that soil and rock at the steep slope is fixed using the environmental Fabric Form, Nail, Rock Bolt and Rock Anchor, And then, the surfaces covered with grasses or weeds. This method will be satisfied both safe slope protection and natural environment appearance. Green Slope is a useful method of the construction sites of steep cutting slopes.

  • PDF

Progressive Failure of a Rock Slope by the Subcritical Crack Growth of Asperities Along Joints (절리면의 응력확대계수가 파괴인성보다 작은 암반사면의 진행성 파괴)

  • Kim, Chee-Hwan;Kemeny, John
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.95-106
    • /
    • 2009
  • Numerical analysis of the progressive failure of a rock slope was conducted using a 3-D rock joint element considering fracture mechanics and subcritical crack growth of asperities in the rock joints. Even though the stress state in the rock slope is not changing, the elapse of time causes subcritical crack growth to break asperities in the joints. The increase of broken asperities causes failure of joints in the rock slope and the increase of failed joints results in failure of a jointed rock slope. As a result, the progressive failure of a jointed rock slope due to the gradual breaking of small asperities along joints generated by subcritical crack growth occurs at a lower stress than if rock failure occurred by exceeding the static strength or fracture toughness.

A Case Study on Reinforcement Method of Cut Slope Expected Plane Destruction (평면파괴가 예상되는 사면의 보강대책에 관한 사례 연구)

  • Lee, Dong-Yub;Park, Choon-Sik;Kim, Beoung-Girl
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1022-1028
    • /
    • 2008
  • From the result of precise field investigation and stability examination for the rock slope, following results were acquired. 1. The weathering rock itself, existing fault zone and underground water complexly effect cut slope so that plane destruction may appear by fault zone. 2. The reinforcement force was decided by the result of limit equilibrium. 3. For rock cut slope, the Rock Bolt was judged as the most proper method to the cut slope as comparing/analyzing Rock Anchor, Rock Bolt and method after relaxing the slope.

  • PDF

Development of Rock Slope Survey and Analysis System using GIS

  • Park, H. J.;Chang, B. S.;Lee, S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.144-146
    • /
    • 2003
  • Techniques for rock slope management and assessment must be developed for the prevention and mitigation of rock fall hazards. To enable this, the rock discontinuity such as fault and joint data must be surveyed, analysed and managed. For this, the discontinuities were detected by automatic and semi-automatic method using DEM and ortho-rectified image of rock slope and the rock slope analysis and management system was developed using GIS. Using the system, slope locations and discontinuities data were constructed to spatial database. The system is consist of ‘Data Management’, ‘Rock Slope DB’, ‘Basic Information’, ‘Image Processing’, ‘Image Analys ing’, ‘Edit’, ‘View’, ‘Theme’, ‘Graphic’, ‘Window’ and ‘Help’. The system was developed using avenue of ArcView 3.2.

  • PDF

Introduction of Q-slope and its Application Case in a Open Pit Coal Mine (Q-slope의 소개와 노천채탄장에서의 적용 사례)

  • Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.305-317
    • /
    • 2019
  • The RMR and Q-system for characterizing rock mass and drilling core, and for estimating the support and reinforcement measures in mine galleries, tunnels and caverns have been widely used by engineers. SMR has been widely used in the rock mass classification for rock slope, but Q-Slope has been introduced into slopes since 2015. In the last ten years, a modified Q-system called Q-slope has been tested by the many authors for application to the benches in open pit mines and excavated road rock slopes. The results have shown that a simple correlation exists between Q-slope values and the long-term stable and unsupported slope angles. Just as RMR and Q have been used together in a tunnel or underground space and complemented by comparison, Q-Slope can be used in parallel with SMR. This paper introduces how to use Q-Slope which has not been announced in Korea and application examples of Pasir open pit coal mine in Indonesia.

Failure Characteristics of Cut Slopes of Shale in Ky ngsang Basin (경상분지 셰일 지역에서의 절토사면 파괴 특성)

  • 김경석;유병옥;이상돈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11b
    • /
    • pp.103-114
    • /
    • 2002
  • Stability of cut-slope is considered to have a deep relationship with rock types since rock has its own engineering and geological characteristic such as shear strength, durability, weathering profile, geological structures. Therefore, analysis of geological and engineering characterisics of rock mass is essential for the evaluation of rock slope stability This paper introduces the statistical data of slope failure cases which was collected from highway slopes constructed in sedimentary rock mainly of shale in Ky ng-sang Basin. Primary failure feature in this area is planar failure along the bedding regardless of slope geometry. Even a disasterous slope failure case due to the thick clay layer between the beddings was reported. Failures and rock fall were reported to ocurred frequently after the completion of cutting due to the weathering, so long-term slope stability should be considered as a important factors in design.

  • PDF

Review of Applicability of Analysis Method based on Case Study on Rainfall-Induced Rock Slope Failure (강우에 의한 암반사면 파괴 해석 사례 연구를 통한 해석방법 적용성 검토)

  • Jung, Jahe;Kim, Wooseok
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.267-274
    • /
    • 2017
  • Behavior of rock mass depend on the mechanical properties of intact rock and geometrical property of discontinuity distributed in rock mass. In case of rock slope, particularly, location of slope failure surface and behavior after failure are changed due to discontinuities. In this study, two 3D slope stability analysis methods were developed for two different failure types which are circular failure and planar failure, considering that failure type of rock slope is dependent on scale of discontinuity which was then applied to real rock slope to review the applicability. In case of circular failure, stable condition was maintained in natural dry condition, which however became unstable when the moisture content of the surface was increased by rainfall. In case of planar failure, rock slope become more unstable comparing to dry condition which is attributable to decrease in friction angle of discontinuity surface due to rainfall. Viewing analysis result above, analysis method proved to have well incorporated the phenomenon occurred on real slope from the analysis result, demonstrating its applicability to reviewing the slope stability as well as to maintaining the slope.

Stability Analysis of Jointed Rock Slope by D.E.M (개별요소법에 의한 절리 암반 비탈면의 안정성 해석)

  • Park, Geun-Uck;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.51-58
    • /
    • 2001
  • The Distinct Element Method (DEM) was used to analyze the stability of jointed rock slope, of which dimension are about 200m(length), 60m(height), $55^{\circ}$ dip. The Barton-Bandis joint model was used, as a constitutive model. The parameters such as JRC and spatial distribution characteristics of discontinuities were acquired through field investigation. Three different cases such as $51^{\circ}$, $45^{\circ}$ and $38^{\circ}$ in angle of rock slope were analyzed to decide a stable slope. To keep the jointed rock slope safely, it is proposed to reduce the height of slope from 60m to 48m and to reduce the angle of the from $55^{\circ}$ to $38^{\circ}$ too.

  • PDF