• Title/Summary/Keyword: rumen fungi

Search Result 61, Processing Time 0.023 seconds

The Role of Rumen Fungi in Fibre Digestion - Review -

  • Ho, Y.W.;Abdullah, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.104-112
    • /
    • 1999
  • Since the anaerobic rumen fungi were discovered in the rumen of a sheep over two decades ago, they have been reported in a wide range of herbivores fud on high fibre diets. The extensive colonisation and degradation of fibrous plant tissues by the fungi suggest that they have a role in fibre digestion. All rumen fungi studied so far are fibrolytic. They produce a range of hydrolytic enzymes, which include the cellulases, hemicellulases, pectinases and phenolic acid esterases, to enable them to invade and degrade the lignocellulosic plant tissues. Although rumen fungi may not seem to be essential to general rumen function since they may be absent in animals fed on low fibre diets, they, nevertheless, could contribute to the digestion of high-fibre poor-quality forages.

Degradation of Rice Straw by Rumen Fungi and Cellulolytic Bacteria through Mono-, Co- or Sequential- Cultures

  • Ha, J.K.;Lee, S.S.;Kim, S.W.;Han, In K.;Ushida, K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.797-802
    • /
    • 2001
  • Two strains of rumen fungi (Piromyces rhizinflata B157, Orpinomyces joyonii SG4) and three strains of rumen cellulolytic bacteria (Ruminococcus albus B199, Ruminococcus flavefaciens FD1 and Fibrobacter succinogenes S85) were used as mono-cultures or combinationally arranged as co- and sequential-cultures to assess the relative contributions and interactions between rumen fungi and cellulolytic bacteria on rice straw degradation. The rates of dry matter degradation of co-cultures were similar to those of corresponding bacterial mono-cultures. Compared to corresponding sequential-cultures, the degradation of rice straw was reduced in all co-cultures (P<0.01). Regardless of the microbial species, the cellulolytic bacteria seemed to inhibit the degradation of rice straw by rumen fungi. The high efficiency of fungal cellulolysis seems to affect bacterial degradation rates.

Effect of Fungal Elimination on Bacteria and Protozoa Populations and Degradation of Straw Dry Matter in the Rumen of Sheep and Goats

  • Li, D.B.;Hou, X.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.70-74
    • /
    • 2007
  • An in vitro study was carried out to investigate the differences in rumen microbes and fiber degradation capacity between sheep and goats. Three local male sheep and three Inner Mongolia male cashmere goats (aged 1.5 to 2 years; weight 25.0 to 32.0 kg) were each fitted with a permanent rumen cannula used to provide rumen fluid. Cycloheximide was used to eliminate rumen anaerobic fungi. The results showed that the quantities of fungal zoospores in the culture fluid of the control group were significantly greater in the sheep than in the goats; however, bacteria and protozoa counts were significantly higher in goats than in sheep. The digestibility of straw dry matter did not differ significantly between the two species before elimination of fungi, but tended to be higher for sheep (55.4%) than for goats (53.3%). The results also indicated that bacteria counts increased significantly after elimination of anaerobic fungi; however, the digestibility of straw dry matter significantly decreased by 12.1% and 8.6% for sheep and goats respectively. This indicated that the anaerobic fungi of the rumen played an important role in degradation of fiber.

Factors Influencing Biohydrogenation and Conjugated Linoleic Acid Production by Mixed Rumen Fungi

  • Nam, In-Sik;Garnsworthy, Philip C.
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.199-204
    • /
    • 2007
  • The objective of this study was to evaluate the effect of soluble carbohydrates (glucose, cellobiose), pH (6.0, 6.5, 7.0), and rumen microbial growth factors (VFA, vitamins) on biohydrogenation of linoleic acid (LA) by mixed rumen fungi. Addition of glucose or cellobiose to culture media slowed the rate of biohydrogenation; only 35-40% of LA was converted to conjugated linoleic acid (CLA) or vaccenic acid (VA) within 24 h of incubation, whereas in the control treatment, 100% of LA was converted within 24 h. Addition of VFA or vitamins did not affect biohydrogenation activity or CLA production. Culturing rumen fungi at pH 6.0 slowed biohydrogenation compared with pH 6.5 or 7.0. CLA production was reduced by pH 6.0 compared with control (pH 6.5), but was higher with pH 7.0. Biohydrogenation of LA to VA was complete within 72 h at pH 6.0, 24 h at pH 6.5, and 48 h at pH 7.0. It is concluded that optimum conditions for biohydrogenation of LA and for CLA production by rumen fungi were provided without addition of soluble carbohydrates, VFA or vitamins to the culture medium; optimum pH was 6.5 for biohydrogenation and 7.0 for CLA production.

COLONIZATION OF ALKALI-TREATED FIBROUS ROUGHAGES BY ANAEROBIC RUMEN FUNGI

  • Wuliji, T.;McManus, W.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.2
    • /
    • pp.65-71
    • /
    • 1988
  • This study reports light and electron microscope examination of rumen fungal colonization of alkali-treated roughage feeds incubated in decron bags in the rumen of cannulated sheep for varying time intervals. Six roughages, pre-treated with ammonium hydroxide or sodium hydroxide at 4% (w/w) level were examined together with untreated control samples. Alkali pre-treatment was associated with an earlier and more pronounced fungal colonization than all control roughages. Sodium hydroxide pre-treatment was significantly more effective than ammonium hydroxide in improving the susceptibility of roughages to rumen fungal colonization and studies by SEM showed that the pre-treatment permitted greater penetration of feeds by fungi. Sodium hydroxide pre-treatment also significantly increased dry matter disappearance from feed held in Dacron bags in the rumen with all feeds except Lucerne stem. It is not known to what extent fungal activity contributed to increased breakdown of the feeds.

Role and Potential of Ruminal Fungi in Fiber Digestion - Review -

  • Ushida, K.;Matsui, H.;Fujino, Yuko;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.6
    • /
    • pp.541-550
    • /
    • 1997
  • Anaerobic chytridiomycete fungi are now well recognized as one of the major components of rumen microflora. Since the discovery of anaerobic fungi, the knowledge upon their morphology and physiology has been accumulated. It is certain that they gave roles in ruminal fiber digestion, although their quantitative contribution to rumen digestion is still unclear. Their role in fiber digestion is complicated by the dietary factors and the interaction with other microorganisms. We aim at reviewing such information in this article. Considerable attention gas been paid to the polysaccharidase of these fungi. Analysis on the fungal genes encoding these enzymes has been performed in several laboratories. This article also covers the genetical analysis of fungal polysaccharidases.

The Rumen Ecosystem : As a Fountain Source of Nobel Enzymes - Review -

  • Lee, S.S.;Shin, K.J.;Kim, W.Y.;Ha, J.K.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.988-1001
    • /
    • 1999
  • The rumen ecosystem is increasingly being recognized as a promising source of superior polysaccharide-degrading enzymes. They contain a wide array of novel enzymes at the levels of specific activities of 1,184, 1,069, 119, 390, 327 and $946{\mu}mol$ Reducing sugar release/min/mg protein for endoglucanase, xylanase, polygalactouronase, amylase, glucanase and arabinase, respectively. These enzymes are mainly located in the surface of rumen microbes. However, glycoside-degrading enzymes (e.g. glucosidase, fucosidase, xylosidase and arabinofuranosidase, etc.) are mainly located in the rumen fluid, when detected enzyme activities according to the ruminal compartments (e.g. enzymes in whole rumen contents, feed-associated enzymes, microbial cell-associated enzymes, and enzymes in the rumen fluid). Ruminal fungi are the primary contributors to high production of novel enzymes; the bacteria and protozoa also have important functions, but less central roles. The enzyme activities of bacteria, protozoa and fungi were detected 32.26, 19.21 and 47.60 mol glucose release/min/mL mediem for cellulose; 42.56, 14.96 and 64.93 mmol xylose release/min/mL medium after 48h incubation, respectively. The polysachharide-degrading enzyme activity of ruminal anaerobic fungi (e.g. Neocallimastix patriciarum and Piromyces communis, etc.) was much higher approximately 3~6 times than that of aerobic fungi (e.g. Tricoderma reesei, T. viridae and Aspergillus oryzae, etc.) used widely in industrial process. Therefore, the rumen ecosystem could be a growing source of novel enzymes having a tremendous potential for industrial applications.

Effect of Grass Lipids and Long Chain Fatty Acids on Cellulose Digestion by Pure Cultures of Rumen Anaerobic Fungi, Piromyces rhizinflata B157 and Orpinomyces joyonii SG4

  • Lee, S.S.;Ha, J.K.;Kim, K.H.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2000
  • The effects of grass lipids and long chain fatty acids (LCFA; palmitic, stearic and oleic acids), at low concentrations (0.001~0.02%), on the growth and enzyme activity of two strains of anaerobic fungi, monocentric strain Piromyces rhizinflata B157 and polycentric strain Orpinomyces joyonii SG4, were investigated. The addition of grass lipids to the medium significantly (p<0.05) decreased filter paper (FP) cellulose digestion, cellulase activity and fungal growth compared to control treatment. However, LCFA did not have any significant inhibitory effects on fungal growth and enzyme activity, which, however, were significantly (p<0.05) stimulated by the addition of oleic acid as have been observed in rumen bacteria and protozoa. This is the first report to our knowledge on the effects of LCFA on the rumen anaerobic fungi. Continued work is needed to identify the mode of action of LCFA in different fungal strains and to verify whether these microorganisms have ability to hydrogenate unsaturated fatty acids to saturated fatty acids.

Effects of Non-ionic Surfactants on Enzyme Distributions of Rumen Contents, Anaerobic Growth of Rumen Microbes, Rumen Fermentation Characteristics and Performances of Lactating Cows

  • Lee, S.S.;Ahn, B.H.;Kim, H.S.;Kim, C.H.;Cheng, K.-J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.104-115
    • /
    • 2003
  • A series of experiments was carried out to determine the possibility for the non-ionic surfactant (NIS) as a feed additive for ruminant animals. The effect of the NIS on (1) the enzyme distribution in the rumen fluids of Hereford bulls, (2) the growth of pure culture of rumen bacteria and (3) rumen anaerobic fungi, (4) the ruminal fermentation characteristics of Korean native cattle (Hanwoo), and (5) the performances of Holstein dairy cows were investigated. When NIS was added to rumen fluid at the level of 0.05 and 0.1% (v/v), the total and specific activities of cell-free enzymes were significantly (p<0.01) increased, but those of cell-bound enzymes were slightly decreased, but not statistically significant. The growth rates of ruminal noncellulolytic species (Ruminobacter amylophilus, Megasphaera elsdenii, Prevotella ruminicola and Selenomonas ruminantium) were significantly (p<0.01) increased by the addition of NIS at both concentrations tested. However, the growth rate of ruminal cellulolytic bacteria (Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and Butyrivibrio fibrisolvens) were slightly increased or not affected by the NIS. In general, NIS appears to effect Gram-negative bacteria more than Gram-positive bacteria; and non-cellulolytic bacteria more than cellulolytic bacteria. The growth rates of ruminal monocentric fungi (Neocallimastix patriciarum and Piromyces communis) and polycentric fungi (Orpinomyces joyonii and Anaeromyces mucronatus) were also significantly (p<0.01) increased by the addition of NIS at all concentrations tested. When NIS was administrated to the rumen of Hanwoo, Total VFA and ammonia-N concentrations, the microbial cell growth rate, CMCase and xylanase activities in the rumen increased with statistical difference (p<0.01), but NIS administration did not affect at the time of 0 and 9 h post-feeding. Addition of NIS to TMR resulted in increased TMR intake and increased milk production by Holstein cows and decreased body condition scores. The NEFA and corticoid concentrations in the blood were lowered by the addition of NIS. These results indicated that the addition of NIS may greatly stimulate the release of some kinds of enzymes from microbial cells, and stimulate the growth rates of a range of anaerobic ruminal microorganisms, and also stimulate the rumen fermentation characteristics and animal performances. Our data indicates potential uses of the NIS as a feed additive for ruminant animals.