• Title/Summary/Keyword: saddle coils

Search Result 9, Processing Time 0.022 seconds

Influence of Concentric Saddle Shaped Coils on the Behavior of a Permanent Magnet Transverse Flux Machine with Segmented Construction

  • Baserrah, Salwa;Rixen, Keno;Orlik, Bernd
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.100-108
    • /
    • 2012
  • Flux concentrated permanent magnet transverse flux machines, FCPM-TFMs, with segmented stators require multi-turn concentric saddle coils to replace the ring coils, which are normally utilized in conventional layeredphase TFM constructions. In this paper, we investigate the influence of the shape of saddle phase windings and their parameter variations on the output torque productivity. Non-meshed coils evaluated via a finite element method (FEM) to examine the effect of the coil's location within one phase on machine performance. By using meshed coils, the analysis can be extended to inspect the distributions of magnetic field strength as well as current density in the coils. Throughout the study, the influence of design parameters on the output torque for two stator structures, i.e., a laminated and soft magnetic composite (SMC), are evaluated.

Design Considerations of 2-pole Synchronous Superconducting Rotating Machine (2극 초전도 동기기 설계법 고찰)

  • Baik, S.K.;Sohn, M.H.;Lee, E.Y.;Kwon, Y.K.;Ryu, K.S.;Jo, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.865-867
    • /
    • 2001
  • Generally large synchronous rotating machines with 2 poles have more merits than the others with more than 2 poles Superconducting synchronous rotating machines also have the same tendency, but they have different structure from conventional ones because of no magnetic core inside of the rotor. As the result, design approaches of the superconducting field coils are also different, which would be classified into 2 types according to their coil shapes. The first one is race-track type and the other is saddle type Race-track type machines have almost the same structure with conventional salient pole generators which are being used as largely small scale machines with more than 2 poles. On the other hand saddle type machines correspond to conventional cylindrical generators with 2 poles used for large turbine system in power plants. In this paper several types of superconducting field coils are introduced for 2 pole superconducting machine design and then the feasibility of each type is considered. Moreover, based on the consideration. 1MVA superconducting generator(S.G.) with saddle type field coil is designed electromagnetically.

  • PDF

The Optimization Of SS-Type Deflection Yoke By Using Genetic Algorithm (유전 알고리즘을 이용한 SS형 편향코일의 형상 최적화)

  • Joo, K.J.;Yoon, I.G.;Kang, B.H.;Joe, M.C.;Hahn, S.Y.;Lee, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.971-973
    • /
    • 1993
  • Deflection Yoke(the following, DY) is the important electric device of CRT which deflects R, G, B beans influencing magnetic field produced by yoke coils. Recently, DY is designed to the saddle/saddle type of coils, being proposed for high-definite and high-efficient CRT. This paper presents the optimization of pin-sectioned saddle coil's shape for minimizing gap between desired and practical deflections of electron beams by using Genetic Algorithm. Evolution Startegy is utilized in this paper, since evolution strategy is a kind of genetic algorithms finding the optimized values by choicing the better generation with comparing the parents and their children. Here, the children are generated by only mutations from the normal random variables. Evolution strategy has shown better powerful converge rate than the other genetic algorithms becuase of using only the mutation-operator.

  • PDF

$^2D$ NMR Probe Development for Investigation of Biosupramolecular Systems

  • Kim, Andre;Kang, Shin-Won;Park, Jang-Su
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.8 no.1
    • /
    • pp.55-61
    • /
    • 2004
  • Biosupramolecular systems such as biological membranes usually fluid under physiological conditions$^1$. Therefore, solid-state NMR has been used to investigate biosupramolecular systems. But solid-state NMR spectra contain a large number of overlapping resonances and are rather difficult to analyze. These problem has to be overcome by selective isotope labeling. We constructed a deuterium NMR probe for AM400 NMR spectrometer, which is mainly used for liquid samples. To overcome the fluidity problem, a saddle type coil was designed. The efficiency was systematically investigated for two kinds of coil geometry, solenoid and saddle types. Our results suggest that solenoids are superior to saddle type coils in the sensitivity. However, the letter fits better to fluid samples such as biosupramolecular systems.

  • PDF

A Review on the RF Coil Designs and Trends for Ultra High Field Magnetic Resonance Imaging

  • Hernandez, Daniel;Kim, Kyoung-Nam
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.3
    • /
    • pp.95-122
    • /
    • 2020
  • In this article, we evaluated the performance of radiofrequency (RF) coils in terms of the signal-to-noise ratio (S/N) and homogeneity of magnetic resonance images when used for ultrahigh-frequency (UHF) 7T magnetic resonance imaging (MRI). High-quality MRI can be obtained when these two basic requirements are met. However, because of the dielectric effect, 7T magnetic resonance imaging still produces essentially a non-uniform magnetic flux (|B1|) density distribution. In general, heterogeneous and homogeneous RF coils may be designed using electromagnetic (EM) modeling. Heterogeneous coils, which are surface coils, are used in consideration of scalability in the |B1| region with a high S/N as multichannel loop coils rather than selecting a single loop. Loop coils are considered state of the art for their simplicity yet effective |B1|-field distribution and intensity. In addition, combining multiple loop coils allows phase arrays (PA). PA coils have gained great interest for use in receiving signals because of parallel imaging (PI) techniques, such as sensitivity encoding (SENSE) and generalized autocalibrating partial parallel acquisition (GRAPPA), which drastically reduce the acquisition time. With the introduction of a parallel transmit coil (pTx) system, a form of transceiver loop arrays has also been proposed. In this article, we discussed the applications and proposed designs of loop coils. RF homogeneous coils for volume imaging include Alderman-Grant resonators, birdcage coils, saddle coils, traveling wave coils, transmission line arrays, composite right-/left-handed arrays, and fusion coils. In this article, we also discussed the basic operation, design, and applications of these coils.

Magnetic Resonance Imaging of Lumen Wall using Quadrature-typed Inside-out Receiver Coil (회전자계 역수신 코일을 이용한 관벽의 자기공명 영상)

  • 문치웅;조종운
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.385-392
    • /
    • 2001
  • This study Proposes a quadrature-typed inside-out receiver coil to obtain magnetic resonance(MR) images of lumen wall. This means that the coil should receive the signals from out-side of receiver coil. This coil has wide and uniform sensitive region to compare with previous coils such as anti-solenoid coil, octal-pole coil and so on. These coils have the disadvantages that sensitive region is narrow and inhomogenous. The proposed coil is consist of two saddle coils of which directions are orthogonal to one another. The sensitivity maps of octal-Pole coil single-saddle coil and quadrature-typed inside-out coil were obtained by computer simulation. And phantom images for each coil were obtained to evaluate the performances of the coil using both 1.5T superconducting and 0.3 Permanent magnet MRI system. The uniformity of quadrature coil's sensitivity map was superior to that of octal-polel coil. Experimentally measured SNR of quadrature coil is also 36% higher than that of single-saddle coil This study shows the possibility of quadrature-typed inside-out receiver coil for the MR lumen wall images.

  • PDF

A Quadrature RF Coil for 0.3 Tesla MRI Systems (0.3 Tesla MRI용 Quadrature 고주파코일)

  • Lee, J.H.;Lee, S.Y.;Khang, D.H.;Mun, C.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.301-302
    • /
    • 1998
  • A quadrature RF coil has been developed for 0.3 Tesla permanent MRI systems. The quadrature RF coil is composed of a solenoid coil and a saddle shaped coil. To minimize the coupling ratio between the two coils, each coil is serially connected to a small extra loop. and the small loops are magnetically coupled to each other. By deliberately adjusting relative positions of the small loops, we have decreased the coupling ratio up to -30dB.

  • PDF

A Study on the Analysis of Magnetic Field in Magnetic Deflection Yoke Based on the Oblate Spheroidal coordinates (Oblate Spheroidal 좌표계를 이용한 자기 편형요크내의 자장 해석에 관한 연구)

  • Seo, Jeong-Doo;Yoo, Hyeong-Seon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.117-124
    • /
    • 1993
  • This paper presents the study on the magnetic field analysis of magnetid deflection yoke using integral equation method. An integral equation method is developed for the computer modeling of the magnetic fields produced by color CRT and T.V. deflection yoke. Deflection of electron beams using magnetic fields is applied in a variety of display instruments such as te.evision receivers, electron probe instruments, etc. The magnetic field is solved by dividing these into the finite elements in the whole domain : the saddle coil which deflects the electron heam horizontally, the toroidal coil which deflects it vertically, magnetic core which enhances the magnetid fields genterated by the both coils. Using oblate spheroidal coordinates, this paper has had an easier access to the shape of magnetic deflection yoke chasing the boundaries than other coordinates.

  • PDF

Radiofrequency Coil Design for in vivo Sodium Magnetic Resonance Imaging of Mouse Kidney at 9.4T

  • Lim, Song-I;Woo, Chul-Woong;Kim, Sang-Tae;Choe, Bo-Young;Woo, Dong-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.65-70
    • /
    • 2018
  • The objective of this study was to describe a radiofrequency (RF) coil design for in vivo sodium magnetic resonance imaging (MRI) for use in small animals. Accumulating evidence has indicated the importance and potential of sodium imaging with improved magnet strength (> 7T), faster gradient, better hardware, multi-nucleus imaging methods, and optimal coil design for patient and animal studies. Thus, we developed a saddle-shaped sodium volume coil with a diameter/length of 30/30 mm. To evaluate the efficiency of this coil, bench-level measurement was performed. Unloaded Q value, loaded Q value, and ratio of these two values were estimated to be 352.8, 211.18, and 1.67, respectively. Thereafter, in vivo acquisition of sodium images was performed using normal mice (12 weeks old; n = 5) with a two-dimensional gradient echo sequence and minimized echo time to increase spatial resolution of images. Sodium signal-to-noise ratio in mouse kidneys (renal cortex, medulla, and pelvis) was measured. We successfully acquired sodium MR images of the mouse kidney with high spatial resolution (approximately 0.625 mm) through a combination of sodium-proton coils.