• Title/Summary/Keyword: salt-tolerance

Search Result 433, Processing Time 0.03 seconds

Study on the Salt Tolerance of Rice and Other Crops in Reclaimed 2. On the Salt Tolerance of Chinese Cabbage and Cabbage in Various Salty Conditions (간척지에서 수도 및 기타작물의 내염성에 관한 연구 2. 여러 가지 염분조건에서 배추와 양배추의 내염성에 관하여)

  • 임형빈
    • Journal of Plant Biology
    • /
    • v.12 no.3
    • /
    • pp.8-14
    • /
    • 1969
  • Salt tolerances of Chinese cabbage and cabbage were observed by means of the sand culture and field experiment. The point of 50% yield reduction of Chinese Cabbage was 1% of salt concentration in sand culture. The Na absorption in the salty upland conditions was increased but the absorption of Ca, Mg were interrupted as the salt concentration was raised and there were no differences in the absorption of N and P. The Si absorption was increased at low salty conditions, but the salt concentration was raised, the absorption was interrupted drastically. The cabbage was more stronger salt tolerance than Chinese cabbage, and it was possible to prevent the salt damage significantly by planting on sloping beds instead of planting on the double-row beds in field condition.

  • PDF

Rice plants regenerated under saline conditions displayed salt tolerance and stress memory

  • Cho, Hyun Min;Chun, Hyun Jin;Kim, Min Chul
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.152-152
    • /
    • 2017
  • Plants exposed to environmental stress for long durations often can adapt to stress conditions with improved tolerance. Moreover this acquired tolerance to stress can be retained even after reverting to destressed growth conditions, which is known to stress memory. In these adaptation and stress memory processes, epigenetic regulation, such as DNA methylation and histone modifications play a key role. Here, we showed that regenerated rice plants from embryogenic callus exposed to gradually increasing NaCl concentrations (up to 120 mM NaCl) acquired salt tolerance and their enhanced tolerance are inherited to subsequent generations. The rice plants (R0) regenerated from rice callus under saline conditions were transplanted into normal paddy field and R1 seeds were harvested. These R1 seeds displayed higher germination rate on MS medium containing 100mM NaCl than wild-type. The callus derived from R1 seeds showed better growth than control callus on high salinity medium. And the salt-adapted R1 plants exhibited higher chlorophyll contents and also higher $K^+/Na^+$ ratio than wild-type rice under saline conditions. The results indicated that rice plants successfully adapted to saline growth conditions during regeneration on high salt medium and moreover this acquired tolerance to salt stress was inherited subsequent generation.

  • PDF

Overexpression of the Escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5

  • Moriwaki, Teppei;Yamamoto, Yujirou;Aida, Takehiko;Funahashi, Tatsuya;Shishido, Toshiyuki;Asada, Masataka;Prodhan, Shamusul Haque;Komamine, Atsushi;Motohashi, Tsuyoshi
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • Salinity stress is a major limiting factor in cereal productivity. Many studies report improvements in salt tolerance using model plants, such as Arabidopsis thaliana or standard varieties of rice, e.g., the japonica rice cultivar Nipponbare. However, there are few reports on the enhancement of salt tolerance in local rice cultivars. In this work, we used the indica rice (Oryza sativa) cultivar BR5, which is a local cultivar in Bangladesh. To improve salt tolerance in BR5, we introduced the Escherichia coli catalase gene, katE. We integrated the katE gene into BR5 plants using an Agrobacterium tumefaciens-mediated method. The introduced katE gene was actively expressed in the transgenic BR5 rice plants, and catalase activity in $T_1$ and $T_2$ transgenic rice was approximately 150% higher than in nontransgenic plants. Under NaCl stress conditions, the transgenic rice plants exhibited high tolerance compared with nontransgenic rice plants. $T_2$ transgenic plants survived in a 200 mM NaCl solution for 2 weeks, whereas nontransgenic plants were scorched after 4 days soaking in the same NaCl solution. Our results indicate that the katE gene can confer salt tolerance to BR5 rice plants. Enhancement of salt tolerance in a local rice cultivar, such as BR5, will provide a powerful and useful tool for overcoming food shortage problems.

Bile Salt-Tolerance of Lactic Acid Bacteria under Anaerobic Broth System (혐기적 Broth System에서 젖산균의 담즙산염 내성)

  • 신용서;김성효;이갑상
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.5
    • /
    • pp.513-518
    • /
    • 1995
  • To evaluate bile salt-tolerance of lactic acid bacteria (LAB, Lactobacillus acidophilus ATCC 4356, Lactobacillus casei IFO 3533, Streptococcus thermnophilus KCTC 2185, Lactobacillus lactis ATCC 4797, and Lactobacillus bulgaricus ATCC 11842), We investigated the survivals, acid production and $\beta $-galactosidase activity of LAB under anaerobic broth system. Cellular permeability of LAB and their cellular retention of $\beta $-galactosidase were also examined in the same system. Although the growth of LAB was slightly suppressed by 0.3% bile salt, they showed normal growth curve. Streptococcus thermophilus KCTC 2185 was significantly more resistant to bile salt than the others. The $\beta $-galactosidase activity from Streptococcus thermophilus KCTC 2185 and Lactobacillus bulgaricus ATCC 11842 and their cellular retention of $\beta $-galactosidase decreased by 0.3% bile salt. The cellular permeability of LAB in the presence of bile salt increased significantly.

  • PDF

Isolation of Gamma-Induced Rice Mutants with Increased Tolerance to Salt by Anther Culture

  • Lee, In-Sok;Kim, Dong-Sub;Hyun, Do-Yoon;Lee, Sang-Jae;Song, Hi-Sup;Lim, Yong-Pyo;Lee, Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.51-57
    • /
    • 2003
  • Doubled haploids have long been recognized as a valuable tool in plant breeding since it not only offers the quickest method of advancing heterozygous breeding lines to homozygosity, but also increased the selection efficiency over conventional procedures due to better discrimination between genotypes within any one generation. Salt tolerant mutants were obtained in rice the variety, 'Hawsungbyeo', through in vitro mutagenesis of in vitro cultured anther-derived calli. Various doses (30, 50, 70 and 90 Gy) of gamma ray were applied to investigate the effect of radiation on callus formation on medium containing 1% NaCl, green plant regeneration, frequency of selected doubled haploid mutants and of the salt tolerant screen. It was demonstrated that the dose of 30 and 50 Gy gamma rays had significant effects on callus formation, regeneration and selection of salt tolerance. No tolerant lines were obtained from non-mutagenized cultures. From gamma ray irradiated cultures, five tolerant lines ($M_2$generation) at germination stage and 13 tolerant lines ($M_3$genoration) at seedling stage were obtained. The frequency of salt tolerant mutants indicates that anther culture applied in connection with gamma rays is an effective way to improve salt tolerance.

Salt Tolerance in Plants - Transgenic Approaches

  • Sangam S.;Jayasree D.;Reddy K.Janardhan;Chari P.V.B.;Sreenivasulu N.;Kishor P.B.Kavi
    • Journal of Plant Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Salinity is one of the major limiting factors for agricultural productivity. In plants, accumulation of osmolytes plays a pivotal role in abiotic stress tolerance. Likewise, exclusion or compartmentation of $Na^+$ ions into vacuoles provides an efficient mechanism to avert deleterious effects of $Na^+$ in the cytosol. Both vacuolar and plasma membrane sodium transporters and $H^+-ATPases$ can provide the necessary ion homeostasis. A variety of crop plants were engineered with respect to the synthesis of osmoprotectants and ion-compartmentation, but there are other cellular pathways involved in the salinity responses that are still not completely explored. Genomics approaches are increasingly used to identify genes and pathway changes involved in salt-tolerance. The new knowledge may be used via guided genetic engineering of multiple genes to create crop plants with significantly increased productivity in saline soils. This review surveys how plants deal with high salt conditions and how salt tolerance can be improved by transgenic approaches.

Selective Homologous Expression of Recombinant Manganese Peroxidase Isozyme of Salt-Tolerant White-Rot Fungus Phlebia sp. MG-60, and Its Salt-Tolerance and Thermostability

  • Kamei, Ichiro;Tomitaka, Nana;Motoda, Taichi;Yamasaki, Yumi
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.248-255
    • /
    • 2022
  • Phlebia sp. MG-60 is the salt-tolerant, white-rot fungus which was isolated from a mangrove forest. This fungus expresses three kinds of manganese peroxidase (MGMnP) isozymes, MGMnP1, MGMnP2 and MGMnP3 in low nitrogen medium (LNM) or LNM containing NaCl. To date, there have been no reports on the biochemical salt-tolerance of these MnP isozymes due to the difficulty of purification. In present study, we established forced expression transformants of these three types of MnP isozymes. In addition, the fact that this fungus hardly produces native MnP in a high-nitrogen medium (HNM) was used to perform isozyme-selective expression and simple purification in HNM. The resulting MGMnPs showed high tolerance for NaCl compared with the MnP of Phanerochaete chrysosporium. It was worth noting that high concentration of NaCl (over 200 mM to 1200 mM) can enhance the activity of MGMnP1. Additionally, MGMnP1 showed relatively high thermo tolerance compared with other isozymes. MGMnPs may have evolved to adapt to chloride-rich environments, mangrove forest.

GWAS of Salt Tolerance and Drought Tolerance in Korean Wheat Core Collection

  • Ji Yu Jeong;Kyeong Do Min;Jae Toon Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.195-195
    • /
    • 2022
  • Abiotic stress is a major problem in global agriculture as it negatively affects crop growth, yield, and quality. Wheat (Triticum aestivum) is the world's second-highest-producing food resource, so the importance of mitigating damage caused by abiotic stress has been emerging. In this study, we performed GWAS to search for SNPs associated with salt tolerance and drought tolerance. NaCl (200 mM) treatment was performed at the seedling stage using 613 wheat varieties in Korean wheat core collection. Root length, root surface area, root average diameter, and root volume were measured. Drought stress was applied at the seedling stage, and the above phenotypes were measured. GW AS was performed for each phenotype data using the MLM, MLMM, and FarmCPU models. The best salt-tolerant wheat varieties were 'MK2402', 'Gyeongnam Geochang-1985-3698', and 'Milyang 13', showing superior root growth. The significant SNP AX-94704125 (BA00756838) were identified in all models. The genes closely located to the significant SNP were searched within ± 250 kb of the corresponding SNP. A total of 11 genes were identified within the region. NB-ARC involved in the defense response, FKSI involved in cell wall biosynthesis, and putative BP Ml involved in abiotic stress responses were discovered in the 11 genes. The best drought-tolerant wheat varieties were 'PI 534284', 'Moro of Sind', and 'CM92354-33M-0Y-0M-6Y-0B-0BGD', showing superior root growth. This study discovered SNPs associated with salt tolerance in Korean wheat core collection through GWAS. GWAS of drought tolerance is now proceeding, and the GWAS results will be represented on a poster. The SNPs identified by GWAS can be useful for studying molecular mechanisms of salt tolerance and drought tolerance in wheat.

  • PDF

Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice

  • Liu, Ai-Ling;Zou, Jie;Liu, Cui-Fang;Zhou, Xiao-Yun;Zhang, Xian-Wen;Luo, Guang-Yu;Chen, Xin-Bo
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • Heat shock proteins play an important role in plant stress tolerance and are mainly regulated by heat shock transcription factors (Hsfs). In this study, we generated transgenic rice over-expressing OsHsfA7 and carried out morphological observation and stress tolerance assays. Transgenic plants exhibited less, shorter lateral roots and root hair. Under salt treatment, over-expressing OsHsfA7 rice showed alleviative appearance of damage symptoms and higher survival rate, leaf electrical conductivity and malondialdehyde content of transgenic plants were lower than those of wild type plants. Meanwhile, transgenic rice seedlings restored normal growth but wild type plants could not be rescued after drought and re-watering treatment. These findings indicate that over-expression of OsHsfA7 gene can increase tolerance to salt and drought stresses in rice seedlings.

Phenotypic and genotypic screening of rice accessions for salt tolerance

  • Reddy, Inja Naga Bheema Lingeswar;Kim, Sung-Mi;Yoon, In Sun;Kim, Beom-Gi;Kwon, Taek-Ryoun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.188-188
    • /
    • 2017
  • Rice (Oryza sativa L.) is one of the major crops that is seriously impacted by global soil salinization. Rice is among those crops where most of the high-yielding cultivars are highly sensitive to salinity. The key to a plant survival under NaCl salt stress is by maintaining a high $K^+/Na^+$ ratio in its cells. Selection for salinity tolerance genotypes of rice based on phenotypic performance alone is less reliable and will delay in progress in breeding. Recent advent of molecular markers, microsatellites or simple sequence repeats (SSRs) were used to find out salt tolerant rice genotypes. In the current experiment phenotyping and genotyping studies were correlated to differentiate different rice accessions for salinity tolerance. Eight rice accessions along with check plant Dongjin were screened by physiological studies using Yoshida solution with 50mM NaCl stress condition. The physiology studies identified four tolerant and four susceptible accessions based on their potassium concentration, sodium concentration, $K^+/Na^+$ ratio and biomass. 17 SSR markers were used to evaluate these rice accessions for salt tolerance out of which five molecular markers were able to discriminate tolerant accessions from the susceptible accessions. Banding pattern of the accessions was scored comparing to the banding pattern of Dongjin. The study identifies accessions based on their association of $K^+/Na^+$ ratio with molecular markers which is very reliable. These markers identified can play a significant role in screening large set of rice accessions for salt tolerance; these markers can be utilized to improve salt tolerance of commercial rice varieties with marker-assisted selection (MAS) approach.

  • PDF