• Title/Summary/Keyword: sandwich wall panel

Search Result 27, Processing Time 0.025 seconds

Mechanical behavior test and analysis of HEH sandwich external wall panel

  • Wu, Xiangguo;Zhang, Xuesen;Tao, Xiaokun;Yang, Ming;Yu, Qun;Qiu, Faqiang
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Prefabricated exterior wall panel is the main non-load-bearing component of assembly building, which affects the comprehensive performance of thermal insulation and durability of the building. It is of great significance to develop new prefabricated exterior wall panel with durable and lightweight characteristics for the development of energy-saving and assembly building. In the prefabricated sandwich insulation hanging wall panel, the selection of material for the outer layer and the arrangement of the connector of the inner and outer wall layers affect the mechanical performance and durability of the wall panels. In this paper, high performance cement-based composites (HPFRC) are used in the outer layer of the new type wall panel. FRP bars are used as the interface connector. Through experiments and analysis, the influence of the arrangement of connectors on the mechanical behaviors of thin-walled composite wall panel and the panel with window openings under two working conditions are investigated. The failure modes and the role of connectors of thin-walled composite wallboard are analyzed. The influence of the thickness of the wall layer and their combination on the strain growth of the control section, the initial crack resistance, the ultimate bearing capacity and the deformation of the wall panels are analyzed. The research work provides a technical reference for the engineering design of the light-weight thin-walled and durable composite sandwich wall panel.

An Experimental Study of Sprinkler system for Sandwich Panel Wall Protection (샌드위치패널 벽면보호용 스프링클러설비 적용 실험)

  • Seo, Dong-Hun;Kim, Won-Hyung;Kim, Jong-Hoon;Lee, Young-Jae
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.37-43
    • /
    • 2017
  • Domestic sandwich panel buildings are widely used on walls and roofs of factories and warehouse facilities. Factory and warehouse facilities have high fire load and rapid spread of fire due to their use characteristics, leading to large fires. Due to the characteristics of materials, walls and roofs are collapsed, resulting in life damage and property damage. In this regard, this study examined domestic and international standards of sprinkler facilities to prevent ignition of sandwich panel walls. Also, in order to check whether the fire was prevented by installing the head on the wall of the sandwich panel, the fire test was carried out with 10 cm, 60 cm, and 120 cm from the wall along the sprinkler head installation standard of domestic fire safety standards. As a result of the fire test, it was confirmed that the sandwich panel was prevented from igniting when the head of water pressure 0.1 MPa and water quantity K-80 was installed. According to the separation distance, it was impossible to measure the temperature at 10 cm, but at 60 cm, At the maximum temperature of $525^{\circ}C$ and 120 cm, the maximum temperature of the wall of the sandwich panel was measured as $276^{\circ}C$. As a result of the fire test, considering the fire point of 450 degrees Celsius in the fire test of the sandwich panel, the distance from the sandwich panel wall to the combustible is more than 120 cm.

Behavior of UHPC-RW-RC wall panel under various temperature and humidity conditions

  • Wu, Xiangguo;Yu, Shiyuan;Tao, Xiaokun;Chen, Baochun;Liu, Hui;Yang, Ming;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.459-467
    • /
    • 2020
  • Mechanical and thermal properties of composite sandwich wall panels are affected by changes in their external environment. Humidity and temperature changes induce stress on wall panels and their core connectors. Under the action of ambient temperature, temperature on the outer layer of the wall panel changes greatly, while that on the inner layer only changes slightly. As a result, stress concentration exists at the intersection of the connector and the wall blade. In this paper, temperature field and stress field distribution of UHPC-RW-RC (Ultra-High Performance Concrete - Rock Wool - Reinforced Concrete) wall panel under high temperature-sprinkling and heating-freezing conditions were investigated by using the general finite element software ABAQUS. Additionally, design of the connection between the wall panel and the main structure is proposed. Findings may serve as a scientific reference for design of high performance composite sandwich wall panels.

An Analysis of Factors Influencing Insulation Performance of Inorganic Autoclaved Lightweight Concrete Sandwich Wall Panels Using Shear Connectors (전단연결재를 적용한 무기계 경량기포콘크리트(ALC) 샌드위치 외벽 패널의 단열성능에 미치는 영향요인 분석)

  • Kang, Dong Howa;Kang, Dong Hwa;Shin, Dong Hyeon;Kim, Hyung Joon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.79-87
    • /
    • 2018
  • The purpose of this study was to analyze factors influencing insulation performance of inorganic Autoclaved Lightweight Concrete(ALC) sandwich wall panels with the application of shear connectors. To analyze the effect of shear connectors on the thermal performance of sandwich wall panels, heat transfer analysis was conducted by using the three-dimensional heat transfer simulation software. Four types of shear connector such as Pin, Clip, Grid, and Truss were selected for insulation performance analysis. Thermal bridge coefficient was calculated by varying typical panel thickness and shear connector thickness and materials such as steel, aluminum, and stainless steel. The results showed that Grid and Truss type widely distributed along the section of sandwich wall panel had a great influence on the thermal bridge coefficient by changing the influence factors. Based on the results of thermal and structural performance analysis, effective heat transmission coefficient of the sandwich wall panel satisfying the passive house insulation criteria was calculated. As a result, it was found that heat transmission coefficient was increased from $0.132W/m^2{\cdot}K$ to $0.141{\sim}0.306W/m^2{\cdot}K$ depending on the shear connector types and materials. In the majority of cases, the passive house insulation criteria was not satisfied after using shear connectors. The results of this study were likely to vary according to how influence factors were set, but it is important to apply the methods that reduce the thermal bridge when there would be a possibility of greatly affecting the insulation performance.

A Study on the Damaged Pattern of Dryvit by External Flame (외부화염에 의한 드라이비트의 소손패턴 연구)

  • Park, Young Ju;Hong, Yi Pyo;Lee, Hae Pyeong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.40-47
    • /
    • 2015
  • In this study, temperature characteristics and fire damage form were analyzed to investigate flame spreading form and fire probability from ignition sources subject to drivit component materials which is finishing material in architecture. Ignition sources were limited to a gas torch and exterior panel board fire, and the size of the sample was manufacture in 30 cm length ${\times}$ 50 cm height ${\times}$ 5cm thickness size. Marble (inner wall) + 3 mm drivit (outer wall), marble (inner wall) + 4 mm plaster stone (outer wall), sandwich panel + 3 mm driver bit (outer wall), sandwich panel + 3 mm driver bit + insulation (outer wall), and gypsum board (inner wall) + 3 mm drivit (outer wall) were prepared for the sample. As result of the research for temperature characteristics, large temperature difference by each material was shown in $218^{\circ}C{\sim}995^{\circ}C$ at 30 seconds and $501^{\circ}C{\sim}1078^{\circ}C$ at 300 seconds. Especially when the inner wall was a plaster board, lowest temperature of $501^{\circ}C$ was shown at 300 seconds and marble inner wall showed the following lowest temperature of $900^{\circ}C$. Temperature rising over $1000^{\circ}C$ was shown in other materials. Regarding fire damage form, drivit or gypsum board outer wall parts exposed to fire showed combustion and carbonization to show calcination(breaking phenomenon) and influence of heat exposure was higher as calcination became more severe.

A Experiment of Sprinkler System to Protect Ceiling Joints of Sandwich Panel Warehouses (샌드위치패널 창고의 벽 천장 접합부 방호용 스프링클러설비 실험)

  • An, Byung-Kug;Kim, Woon-Hyung;Seo, Dong-Hun;Ham, Eun-Gu
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.1
    • /
    • pp.98-108
    • /
    • 2019
  • Purpose: The purpose of this study is to test the sprinkler performance to protect the wall and ceiling joints of the sandwich panel warehouse in case of fire. Method: Based on the field surveys, test was setup and combustibles were prepared. The sprinkler discharge tests were performed at the corner of the wall and right under the sprinkler head. Results: It has been found that operation of the K-80 closed sprinkler head prevents the ignition of the sandwich panel and therefore no damage to the joints of sandwich panels. To prevent skipping phenomenon, it is necessary to install the sprinkler head from the corner of the wall and to keep a minimum distance of 2.4m and a maximum distance of 3m. Conclution: A Standard Operation Procedure should be prepared to suppress and rescue of fire brigade for a sandwich panel warehouse protected by perimeter sprinklers preventing a ignition of core materials and control fire.

Research on three-point bending fatigue life and damage mechanism of aluminum foam sandwich panel

  • Wei Xiao;Huihui Wang;Xuding Song
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • Aluminum foams sandwich panel (AFSP) has been used in engineering field, where cyclic loading is used in most of the applications. In this paper, the fatigue life of AFSP prepared by the bonding method was investigated through a three-point bending test. The mathematical statistics method was used to analyze the influence of different plate thicknesses and core densities on the bending fatigue life. The macroscopic fatigue failure modes and damage mechanisms were observed by scanning electron microscopy (SEM). The results indicate that panel thickness and core layer density have a significant influence on the bending fatigue life of AFSP and their dispersion. The damage mechanism of fatigue failure to cells in aluminum foam is that the initial fatigue crack begins the cell wall, the thinnest position of the cell wall or the intersection of the cell wall and the cell ridge, where stress concentrations are more likely to occur. The fatigue failure of aluminum foam core usually starts from the semi-closed unit of the lower layer, and the fatigue crack propagates layer by layer along the direction of the maximum shear stress. The results can provide a reference for the practical engineering design and application of AFSP.

Comparison of Sound Transmission Loss of Panels Used in Ship Cabins for Field and Laboratory Measurements

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Sang-Ryul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1E
    • /
    • pp.9-15
    • /
    • 2009
  • In this paper, FSTL (Field Sound Transmission Loss) measured in a mock-up simulating ship cabins is studied. A mock-up is built by using 6 mm steel plate, and two identical cabins are made where 25 mm or 50 mm sandwich panel is used to construct wall and ceiling inside the steel structure. Various wall panels and ceilings are tested, where effects of wall and ceiling panel thickness, and presence of a unit toilet on FSTL are investigated. It is found that the effect of unit toilet on FSTL is at most 1 dB. From the comparison of FSTL for panels of the same thickness of 50 mm, it is observed that panel having inside air cavity of 10 mm shows higher STL than that of the panel without air cavity. Comparison of FSTL for panels of 50 mm and 25 mm thickness shows that dependency on surface density predicted by mass law is not observed. The sandwich panels act as a mass-spring system, which shows a resonant mode that cannot be explained by the mass law. It is also found that STL from laboratory test is higher than FSTL by 5- 10 dB, which can be explained by flanking structure-borne noise transmission path such as ceiling, floor and corridor-facing wall.

A Study on the Improvement of Field Activity for Firemen in Sandwich Panel Warehouse (샌드위치패널 창고 소방대원 현장활동 대응력 제고 방안)

  • An, Byung-Kug;Kim, Woon-Hyung;Yang, So-Jin;Ham, En-Gu
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.421-429
    • /
    • 2020
  • Purpose: The purpose of this study is to present step-by-step countermeasures to prevent fires in sandwich panel warehouses and to enhance on-site fire response capabilities. Method: Interviews of firefighters related to fire sites, advice from fire experts, and experiments on protection performance were conducted to draw up measures for each element to strengthen on-site response capabilities. Result: The fire safety management checklist for warehouse fire safety managers and the installation standards for wall protection of sandwich panel warehouses are presented. In addition, Standard Operational Procedures(SOP) for fire application of sandwich panel warehouses were established for firefighters on-site. Conclusion: Through this study, step-by-step fire safety measures were established for preventing, protecting and suppressing fires in sandwich panel warehouses.