• 제목/요약/키워드: scaffold protein

검색결과 84건 처리시간 0.025초

Radiolabeling of antibody-mimetic scaffold protein with 99mTc tricarbonyl precursor via hexahistidine (His6)-tag

  • Shim, Ha Eun;Kim, Do Hee;Lee, Chang Heon;Choi, Dae seong;Lee, Dong-Eun
    • 대한방사성의약품학회지
    • /
    • 제5권1호
    • /
    • pp.11-17
    • /
    • 2019
  • Recently, antibody-like scaffold proteins have received a great deal of interest in diagnosis and therapy applications because of their intrinsic features that are often required for tumor imaging and therapy. Intrinsic issues that are associated with therapeutic application of antibody-like scaffold proteins, particularly in cancer treatment, include an efficient and straightforward radiolabeling for understanding in vivo biodistribution and excretion route, and monitoring therapeutic responses. Herein, we report an efficient and straightforward method for radiolabeling of antibody-like scaffold proteins with the $[^{99m}Tc(OH_2)_3(CO)_3]^+$ ($^{99m}Tc$-tricarbonyl) by using a site-specific direct labeling method via hexahistidine-tag, which is a widely used for general purification of recombinant proteins with His-affinity chromatography. Repebody is a new class of antibody-like scaffold protein that consists of highly diverse leucine-rich repeat (LRR) modules. Although all possible biomedical applications with repebody are ongoing, it's in vivo biodistribution and excretion pathway has not yet been explored. In this study, hexahistidine ($His_6$)-tag bearing repebody (rEgH9) was labeled with [$^{99m}Tc$]-tricarbonyl. Repebody protein was radiolabeled with high radiolabeling efficiency (>90%) and radiolabeled compound was more than 99% pure after purification. These results clearly demonstrate that the present radiolabeling method will be useful molecular imaging study.

Ankyrin Repeat-Rich Membrane Spanning (ARMS)/Kidins220 Scaffold Protein Regulates Neuroblastoma Cell Proliferation through p21

  • Jung, Heekyung;Shin, Joo-Hyun;Park, Young-Seok;Chang, Mi-Sook
    • Molecules and Cells
    • /
    • 제37권12호
    • /
    • pp.881-887
    • /
    • 2014
  • Cell proliferation is tightly controlled by the cell-cycle regulatory proteins, primarily by cyclins and cyclin-dependent kinases (CDKs) in the $G_1$ phase. The ankyrin repeat-rich membrane spanning (ARMS) scaffold protein, also known as kinase D-interacting substrate of 220 kDa (Kidins 220), has been previously identified as a prominent downstream target of neurotrophin and ephrin receptors. Many studies have reported that ARMS/Kidins220 acts as a major signaling platform in organizing the signaling complex to regulate various cellular responses in the nervous and vascular systems. However, the role of ARMS/Kidins220 in cell proliferation and cell-cycle progression has never been investigated. Here we report that knockdown of ARMS/Kidins220 inhibits mouse neuroblastoma cell proliferation by inducing slowdown of cell cycle in the $G_1$ phase. This effect is mediated by the upregulation of a CDK inhibitor p21, which causes the decrease in cyclin D1 and CDK4 protein levels and subsequent reduction of pRb hyperphosphorylation. Our results suggest a new role of ARMS/Kidins220 as a signaling platform to regulate tumor cell proliferation in response to the extracellular stimuli.

Cross-Linked Collagen Scaffold from Fish Skin as an Ideal Biopolymer for Tissue Engineering

  • Biazar, Esmaeil;Kamalvand, Mahshad;Keshel, Saeed Heidari;Pourjabbar, Bahareh;Rezaei-Tavirani, Mustafa
    • 한국재료학회지
    • /
    • 제32권4호
    • /
    • pp.186-192
    • /
    • 2022
  • Collagen is one of the most widely used biological materials in medical design. Collagen extracted from marine organisms can be a good biomaterial for tissue engineering applications due to its suitable properties. In this study, collagen is extracted from fish skin of Ctenopharyngodon Idella; then, the freeze drying method is used to design a porous scaffold. The scaffolds are modified with the chemical crosslinker N-(3-Dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) to improve some of the overall properties. The extracted collagen samples are evaluated by various analyzes including cytotoxicity test, SDS-PAGE, FTIR, DSC, SEM, biodegradability and cell culture. The results of the SDS-PAGE study demonstrate well the protein patterns of the extracted collagen. The results show that cross-linking of collagen scaffold increases denaturation temperature and degradation time. The results of cytotoxicity show that the modified scaffolds have no toxicity. The cell adhesion study also shows that epithelial cells adhere well to the scaffold. Therefore, this method of chemical modification of collagen scaffold can improve the physical and biological properties. Overall, the modified collagen scaffold can be a promising candidate for tissue engineering applications.

SIS로 개질된 PLGA 담체에서의 단백질의 서방화 (Sustained Release of Proteins Using Small Intestinal Submucosa Modified PLGA Scaffold)

  • 고연경;최명규;김순희;김근아;이해방;이종문;강길선
    • 폴리머
    • /
    • 제32권3호
    • /
    • pp.199-205
    • /
    • 2008
  • 단백질 및 펩타이드의 서방형 약물전달체로서 소장점막하조직(SIS)으로 개질된 PLGA 담체를 제조하고자 하였으며, SIS/PLGA 담체는 용매 캐스팅/염 추출법에 의해 준비된 PLGA 담체에 SIS 용액을 첨가하여 단순 함침방법으로 제조하였다. 본 실험에서 사용된 돼지의 소장 점막층에서 유래된 SIS는 면역거부반응이 적어 생체재료로 널리 사용되고 있다. 제조된 PLGA 및 SIS/PLGA 담체를 SEM을 통한 표면 및 내부 관찰결과 두 담체 모두 열린 다공구조를 이루며, 특히 SIS/PLGA 담체는 PLGA 담체의 다공 내부에 SIS가 침투되어 작은 네트워크를 형성하고 있음을 확인하였다. 또한 단백질의 방출경향을 확인하기 위하여 형광이 결합된 소 혈청 알부민(FITC-BSA)을 PLGA 및 SIS/PLGA 담체에 담지시킨 후, 형광광도계를 통해 이들의 방출거동을 확인하였다. PLGA 담체와 비교할 때 SIS/PLGA 담체에서의 BSA의 방출은 초기방출량이 적고 지속적으로 일정량이 방출되는 거동을 확인할 수 있었으며 함량별 BSA 농도에 따른 SIS/PLGA 담체에서의 방출은 BSA의 양이 증가할수록 빠르고 많은 양이 방출되는 경향성 있는 방출패턴을 보임을 확인하였다. 결론적으로 PLGA 담체에 침투한 SIS 젤이 BSA의 급격한 초기방출을 억제하며, SIS로 개질된 PLGA 담체는 방출조절이 가능한 약물전달체로서 매우 유용할 것으로 사료된다.

Biomedical Application of Silk Sericin: Recent Research Trend

  • Seong-Gon Kim;Je-Yong Choi;HaeYong Kweon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제48권1호
    • /
    • pp.1-12
    • /
    • 2024
  • Silk sericin, a natural protein from silkworm cocoons, is emerging as a multifunctional biomaterial in biomedicine, particularly in tissue engineering and wound healing. Recent studies have highlighted its biocompatibility, biodegradability, and potential for chemical modification, which allows it to be incorporated into various scaffold architectures. This review article synthesizes current research, including the development of sericin-based hydrogel scaffolds for tissue engineering and sericin's role in enhancing wound healing. Key findings demonstrate sericin's ability to refine scaffold porosity and mechanical strength, expedite tissue healing, and reduce bacterial load in wounds. The integration of sericin into novel bioactive dressings and its use in peripheral nerve injury repair are also discussed, showcasing its adaptability and efficacy. The convergence of these studies illustrates the broad applications of sericin, from scaffold design to clinical interventions, making it a promising material in regenerative medicine and tissue engineering, with the potential to improve patient outcomes significantly.

임상가를 위한 특집 3 - rhBMP-2와 LFA-collagen scaffold를 이용한 BRONJ의 성공적인 치료 전략 (Successful strategy of treatment used to rhBMP-2 and LFA-collagen scaffold for BRONJ)

  • 권경환
    • 대한치과의사협회지
    • /
    • 제52권4호
    • /
    • pp.218-233
    • /
    • 2014
  • Bispbosphonates are a class of pharmaceutic agents, which induce apoptosis of osteoclast as well as impair osteoclastic activity to suppress bone resorption. Thus, bisphophonates are effectively used to treat osteoporosis, multiple myeloma and to prevent bone metastases of malignant cancer. However, recently dental disease have been reported associated with Bisphosphonates. Thus, there are a number of discussions about proper prevention and treatment of bisphosphonate-related osteonecrosis of jaw(BRONJ). Marshall R. Urist in 1965 made the seminal discovery that a specific protein, BMP(bone morphogenetic protein), found in the extracellular matrix of demineralized bone could induce bone formation newly when implanted in extraosseous tissues in a host. BMPs are multi-functional growth factors which are members of the transforming growth factor-beta super family and their ability is that plays a pivotal roll in inducing bone. About 18 BMP family members have been identified and characterized. Among of them, BMP-2 and BMP-7 have significant importance in bone development. In this study, patients of BRONJ were recieved who visited Department of oral and maxillofacial surgery, school of dentistry, Wonkwang university for past 3 years from 2011 to 2013. We focused on the results of the surgical intervention. We suggest that new strategy of treatment used to rhBMP-2 and LFA(Lidocaine-Fibrinogen-Aprotinin)-collagen scaffold for patients of BRONJ. The purpose of this paper is to give a brief overview of BMPs and to critically review the clinical data currently available on rhBMP-2 and LFA collage scaffold.

The Synergistic Effects of Agarose Scaffold Supplemented with Low-molecular-weight Silk Fibroin in Bone Tissue Regeneration

  • Park, Seung-Won;Goo, Tae-Won;Kim, Seong-Ryul;Kweon, Hae-Yong;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제23권2호
    • /
    • pp.193-199
    • /
    • 2011
  • Silk protein and agarose are widely known as biocompatible materials in the human body. A three-dimensional (3D) scaffold composed of agarose and low-molecular- weight silk fibroin (LSF) was fabricated and examined in terms of structural characteristics and cellular responses in bone tissue engineering. This study showed that mouse pluripotent precursor cells attached to and proliferated uniformly on and within the LSF-containing 3D scaffold. Interestingly, cell proliferation and attachment was shown to be higher in a 3D scaffold containing 0.02% LSF, as compared to other LSF concentrations. The results of this study suggest that agarose-LSF scaffolds may be useful materials for tissue engineering.

자유형상제작기반 골 형성 단백질 탑재형 3 차원 PCL/PLGA/collagen 인공지지체의 토끼 요골 재생에 미치는 영향 (Effect of bone morphogenetic protein-2 loaded three-dimensional PCL/PLGA/Collagen scaffold using solid freeform fabrication technology for regeneration of rabbit radius segmental defect)

  • 심진형;박주영;조이딥 쿤두;김세은;강성수;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.169-170
    • /
    • 2013
  • PDF

Efficient Solid Phase Library Synthesis of 7 -Alkoxy-1,3,4,5-tetrahydro-benzo [e][ 1.4] diazepin-2-one

  • Im, Isak;Kim, Yong-Chul
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.342.2-342.2
    • /
    • 2002
  • The ${\beta}$-turn has been implicated as an important conformation for biological recognition of peptides or proteins. Benzodiazepine classes have been known as one of the non peptide ${\beta}$-turn mimic scaffolds. We have developed an efficient approach for the synthesis and derivatization of a scaffold of hydroxytetrahydrodizepinone class in order to screen compound library in various protein targets for new lead generations as well as for structure activity relationships of the scaffold. (omitted)

  • PDF

방사성골괴사 극복을 위한 피브린지지체의 효용성 평가 (Evaluation the Effectiveness of Fibrinogen to Overcome Bone Radiation Damage)

  • 정홍문
    • 한국방사선학회논문지
    • /
    • 제15권4호
    • /
    • pp.539-545
    • /
    • 2021
  • 방사선 치료는 방사선 부작용을 수반한다. 특히 혈관계의 장해를 수반하게 된다. 따라서 방사선의 조사가 이루어진 뼈의 재생부위에는 산소와 영양분 결핍이 발생된다. 결국에는 뼈를 재생할 수 없는 방사성골괴사 (osteoradionecrosis)가 세포 환경적으로 만들어 진다. 전례연구에 따르면 방사성골괴사 상태를 극복하기 위해 골형성 단백질-2 (Bone Morphogenetic Protein-2)를 사용한다. 이번 연구에서는 쥐의 두정부에 방사선 조사 후 뼈의 재생에 가장 많이 사용되는 생체재료인 피브린 지지체에 골형성 단백질-2 를 처리하여 방사성 골괴사 부위에 이식한 후 뼈의 재생능력을 알아보고자 하였다. 또한 몇 주부터 뼈 재생 효과가 발생되는지를 검증하고자 하였다. 실험결과에 따르면 방사선이 조사된 쥐의 두개골 결손모델에서는 4 주초기 뼈 형성 기간 보다는 후반 뼈 형성시기인 8 주가 지나야 뼈 형성의 효과가 발생하는 결과를 얻을 수 있었다. 더군다나 쥐의 두 개부 결함 모델에서 피브린 지지체의 재생 뼈 형성은 결손 조직의 내부에서부터 형성되는 결과를 얻었다.