• Title/Summary/Keyword: scan direction

Search Result 192, Processing Time 0.025 seconds

Digital Scan Converter Algorithm for Ultrsound Sector Scanner (초음파 섹터 스캐너를 위한 디지털 스캔 변환 기법)

  • 김근호;오정환
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.469-478
    • /
    • 1996
  • In the conventional digital ultrasound scanner, the reflected signal is sampled either in polar coordinates of R-$\theta$ method, or in Cartesian coordinates of uniform ladder algorithm (ULA). The R-$\theta$ scan method necessitates a coordinate transform process which makes hardware complex in comparison with ULA scan mrthoA In spite of this complexity, R-$\theta$ method has a good resolution in ultrasonographic (US) image, since scan direction of the US imaging is a radial direction. In this paper, a new digital scan converter is proposed, which is named the radius uniform ladder algorithm (RULA). The RULA has the rome scan direction as the US scanning in the radial direction and as the display space in the $\theta$ direction. In tllis new approach, sampled points we uniformly distributed in each horizontal line i.n well as in each radial ray so that the data are displayed in the Cartesian coordinates by the 1-D interpolation process. The propped algorithm has an uniform resolution in the periphery and the center field in comparison with equi-angle ULA and equi-interval ULA. To extend the scan angle, concentric square raster sampling (CSRS) is adopted with reduction of discontinuities on the junctions between horizontal scan and vertical scan. The discontinuities are reduced by using the hmction filtering along the $\theta$ direction.

  • PDF

Direction Augmented Probabilistic Scan Matching for Reliable Localization (신뢰성 높은 위치 인식을 위하여 방향을 고려한 확률적 스캔 매칭 기법)

  • Choi, Min-Yong;Choi, Jin-Woo;Chung, Wan-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1234-1239
    • /
    • 2011
  • The scan matching is widely used in localization and mapping of mobile robots. This paper presents a probabilistic scan matching method. To improve the performance of the scan matching, a direction of data point is incorporated into the scan matching. The direction of data point is calculated using the line fitted by the neighborhood data. Owing to the incorporation, the performance of the matching was improved. The number of iterations in the scan matching decreased, and the tolerance against a high rotation between scans increased. Based on real data of a laser range finder, experiments verified the performance of the proposed direction augmented probabilistic scan matching algorithm.

Insertion Real-Time Disk Scheduling Scheme and A Both Direction SCAN Algorithms (삽입 실시간 디스크 스케줄링기법과 양방향 SCAN기법)

  • 이덕용;박창현;조행래
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.34-36
    • /
    • 2004
  • 실시간 스케줄링에서 시간당 처리량을 놓이기 위해서 EDF에 SCAN기법을 추가하는 많은 방법이 연구되었다. 하지만 기존 기법들은 SCAN그룹을 생성할 때, 연속된 태스크들만 SCAN그룹의 포함 대상으로 고려하기 때문에 많은 제한이 따른다. 또한 SCAN기법은 처리방향이 고정되었기 때문에 시간적 손실이 많은 단점을 가진다. 본 연구에서는 연속되지 않은 태스크들을 SCAN그룹의 포함 대상으로 고려할 수 있는 태스크 삽입기법과, 기존의 SCAN그룹에서 합병하지 못하는 SCAN그룹들을 합병할 수 있는 SCAN합병기법, 마지막으로 SCAN그룹을 처리하는데 시간적 이점을 얻을 수 있는 양 방향 SCAN기법을 제시한다.

  • PDF

Low power scan testing and efficient test data compression for System-On-a-Chip

  • Jung, Jun-Mo;Chong, Jong-Wha
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.228-230
    • /
    • 2002
  • We present a new low power scan testing and test data compression method for System-On-a-Chip (SOC). The don't cares in unspecified scan vectors are mapped to binary values for low power and encoded by adaptive encoding method for higher compression. Also, the scan-in direction of scan vectors is determined for low power. Experimental results for full-scanned versions of ISCAS 89 benchmark circuits show that the proposed method has both low power and higher compression.

  • PDF

2D Pattern Development of Tight-fitting Bodysuit from 3D Body Scan Data for Comfortable Pressure Sensation (인체의 3차원 스캔 데이터를 이용한 밀착 바디 슈트 개발)

  • Jeong, Yeon-Hee
    • Korean Journal of Human Ecology
    • /
    • v.15 no.3
    • /
    • pp.481-490
    • /
    • 2006
  • Adjusting pressure level in the construction of athletes' tight-fitting garments by reducing the elastic knit pattern is a challenging subject, which influences the performance of the wearer directly. Therefore, in this study, relationship between the reduction rates of the basic pattern obtained from 3D human scan data and resultant clothing pressure was explored to improve the fit and pressure exerted by clothing. 3D scan data were obtained using Cyberware and they were transformed into a flat pattern using software based on Runge-Kutta method. Reduction rate was examined by subjective wear test as well as objective pressure measurement. As a result, difference in the length between the original 3D body scan data and the 2D tight-fitting pattern was 0.02$\sim$0.50cm (0.05$\sim$1.06%), which was within the range of tolerable limits in making clothes. Among the five garments, the 3T-pattern was superior in terms of subjective sensation and fit. The pressure of the 3T pattern was 2$\sim$4 gf/cm2 at five locations on the body, which is almost the same or a bit higher than that of Z-pattern. In the case of tight-fitting overall garment, the reduction rate of the pattern in the wale direction is more critical to the subjective sensation than the course direction. It is recommended that the reduction grading rules of course direction should be larger than that of Ziegert for a better fit of tight-fitting garments. In the case of wale direction, however, reduction grading rule should be kept the same as suggested earlier by Ziegert (1988).

  • PDF

Experiments on the Grinding Conditions for Helical Scan Grinding of a Glass Material (유리 재료의 헬리컬 스캔 연삭 조건 실험)

  • Lee, Dae-Uk;O, Chang-Jin;Lee, Eung-Seok;Kim, Ok-Hyeon;Kim, Seong-Cheong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.165-170
    • /
    • 2001
  • In normal grinding abrasive particles of a grinding wheel rotate on planes parallel to the direction of workpiece fred. which may induce continued scratch lines on ground surface as the workpiece feeds. Instead in helical scan grinding the planes make an angle, called a helical angle, with the feeding direction. Thus scratch lines produced by abrasive particles per one revolution are discontinued which implies that the generation of scratch lines are suppressed by the helical scan grinding. In this study some experimental works have been done on the helical scan grinding of glass to find the effects of grinding conditions on the surface roughness and estimate the optimal grinding conditions. The helical angle, fred rate, material removal rate and the wheel speed are taken as factors for three kinds of grinding wheels i.e., coarse(#140 mesh), medium(#400) and fine(#800) diamond wheels. The experiments are scheduled by Taguchi technique and ANOVA has been carried out for the interpretation of the results. As a result of this study effects of the factors are verified quantitatively showing that the major factors are changed according to the wheel's mesh size and the helical angle is one of the influencing factors on the surface quality.

  • PDF

Correction of Beam Direction Error caused by Frequency Scan Effect in Active Phased Array Antenna for Satellite Communications (위성통신 능동 위상배열 안테나에서 주파수 스캔 효과로 발생하는 빔 지향 오차의 보상)

  • 전순익;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.413-420
    • /
    • 2003
  • In this paper, the correction method of antenna beam direction errors is introduced which caused by frequency scan effect in active Phased may antenna for satellite communications. The antenna makes the beam directional error from frequency scan effect when it has dual beam may structure with asymmetrical series connection, their frequencies are different and for from each other, their 3dB beamwidth is narrow, and scan range is wide. By proposed equations, estimated beam direction error angles can be calculated and active phase shifter control values also can be calculated to compensate them. In this paper, the active phased array antenna system was fabricated to measure beam direction errors both before and after correction, which has dual beam from 32${\times}$4 main level array and 4${\times}$2 second level array, frequency deviation 500 MHz max.(6.7 %) at 7.25 GHz∼7.75 GHz ranges, 0$^{\circ}$${\pm}$35$^{\circ}$nm ranges, and 35.6 dBi gain with 2.2$^{\circ}$3 dB beam width. Its beam direction error by frequency san effect which was 2.5$^{\circ}$max., was reduced to 0.2$^{\circ}$max. after correction. This was 7 dB improvement of signal loss. The active phased array antenna can accurately track the target satellite for communications by this proposed correction method.

Tracking and Deflection Coil Design for Vertical Colour Selection

  • Wesenbeeck, R. Van;Skoric, B.;Ijzerman, W.;Krijn, M.;Engelaar, P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.130-133
    • /
    • 2003
  • Vertical Colour Selection (VCS) is an option for slim CRTs with increased sharpness and brightness. The direction of self-convergence of the DY is changed to vertical in order to obtain better spot uniformity, but the line scan direction remains horizontal. Hence, no video conversion is needed, contrary to transposed scan. In this paper we address two issues: First, there is a high risk of moire, since the scan lines and the phosphor stripes are parallel. We propose a feedback mechanism guiding the electron beams towards the middle of the mask slots. As positive side effects, the brightness is improved and the shadow mask can be made of a cheap type of steel. Secondly, VCS deflection coils have to satisfy different requirements than coils in ordinary CRTs. We discuss the design rules for self-convergent VCS coils and present simulation results.

  • PDF

Low Power Scan Testing and Test Data Compression for System-On-a-Chip (System-On-a-Chip(SOC)에 대한 효율적인 테스트 데이터 압축 및 저전력 스캔 테스트)

  • 정준모;정정화
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.12
    • /
    • pp.1045-1054
    • /
    • 2002
  • We present a new low power scan testing and test data compression mothod lot System-On-a-Chip (SOC). The don't cares in unspecified scan vectors are mapped to binary values for low Power and encoded by adaptive encoding method for higher compression. Also, the scan-in direction of scan vectors is determined for low power. Experimental results for full - scanned versions of ISCAS 89 benchmark circuits show that the proposed method has both low power and higher compression.

Effects of NEX on SNR and Artifacts in Parallel MR Images Acquired using Reference Scan

  • Heo, Yeong-Cheol;Lee, Hae-Kag;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.422-427
    • /
    • 2013
  • The aim of this study was to investigate effects of the number of acquisitions (NEX) on signal-to-noise (SNR) and artifacts in SENSE parallel imaging of magnetic resonance imaging (MRI). 3.0T MR System, 8 Channel sensitivity encoding (SENSE) head coils were used along with an in-vivo phantom. Reference sequence of 3D fast field echo (FFE) was consisted of NEX values of 2, 4, 6, 8, 10 and 12. The T2 turbo spin echo (TSE) sequence used for exams achieved SENSE factors of 1.2, 1.5, 1.8, 2.0, 2.2, 2.5, 2.8, 3.0, 3.2, 3.5, 3.8 and 4.0. Exams were conducted five times for each SENSE factor to measure signal intensity of the object, the posterior phase-encode direction and frequency direction. And SNR was calculated using mean values. SENSE artifacts were identified as background signal intensity in the phase-encoded direction using MRIcro. It was found that SNR increased but SENSE artifacts reduced with NEX of 4, 8 and 12 when the NEX increased in reference scan. It is therefore concluded that image quality can be improved with NEX of 4, 8 and 12 for reference scanning.