• 제목/요약/키워드: science misconceptions

검색결과 240건 처리시간 0.022초

학생들의 과학 오개념에 관한 초등 예비 교사들의 이해 (Preservice Elementary Teachers' Understandings of Children's Science Misconceptions)

  • 장명덕
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제29권1호
    • /
    • pp.32-46
    • /
    • 2010
  • The purpose of this study was to examine preservice elementary teachers' understandings and instructional strategies about children's science misconceptions. The participants were sixty senior students from a national university of education located in the midwestern area of Korea. A questionnaire, developed on the basis of Gomez-Zwiep's semi-structured interview questions, was used. The results of this study are as follows: first, many of the preservice teachers showed appropriate understanding of 'definition of misconceptions' (96.67%), 'examples of misconceptions' (78.33%), 'resistance to change of misconceptions' (71.67%), and 'impact on instruction of misconceptions' (91.67%), except for 'sources of misconceptions' (45.00%); second, although almost all the preservice teachers (96.67%) appreciated the necessity of identifying children's misconceptions before instruction, 43.33% of the preservice teachers did not show appropriate understandings on when and how to identify children's misconceptions; third, most of the preservice teachers (81.67%) were generally aware of instructional strategies to address children's misconceptions.

  • PDF

초등 교사들의 과학 오개념에 대한 인식과 수업전략 (Elementary Teachers' Understandings and Instructional Strategies on Students' Science Misconceptions)

  • 장명덕
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제28권4호
    • /
    • pp.425-439
    • /
    • 2009
  • The purpose of this study was to investigate what elementary teachers know about students' science misconceptions and how the teachers plan for and address their students' misconceptions in instruction. The sample included 61 teachers who participated in a teacher training program irrelative to science education. A questionnaire into which Gomez-Zwiep's semi-structured interview questions was transformed was used to examine the teachers' understandings of definition, origin, examples, and so on of science misconceptions, and their instructional strategies for addressing their students' misconceptions before and while instruction. The results showed that many teachers (about 60%) did not have appropriate understanding of students' misconceptions, that the majority of the teachers (about 75%) did not consider misconceptions at all before teaching science lessons, and that almost all the teachers (about 90%) did not know particular strategies specifically designed for misconceptions.

  • PDF

고등학생들의 유전에 대한 오인의 확인 및 유전학 지도방향 (Identification of Misconception of Genetic Concepts Held by High School Students and Suggestions for Teaching Genetics)

  • 박종석;조희형
    • 한국과학교육학회지
    • /
    • 제6권2호
    • /
    • pp.35-42
    • /
    • 1986
  • Recent studies on the learning of the science concepts indicate that most students have misconceptions of the science concepts. The misconceptions have their roots in the various aspects of teaching and learning situations. The textbooks used in schools have been substantiated as one of the sources of the misconceptions. Genetics has been recognized as one of the most difficult areas for high school students to learn. Therefore, this study had its objective to identify the misconceptions of genetics held by high school students and analyze the high school biology textbook as the source of the misconceptions. In order to indentify the misconceptions of the genetic concepts, the volunteer students were interviewed and genetic content and its sequence in the high school biology textbooks were analyzed. The misconceptions identified in this study are as follow: gamete formation, mitosis, trait expression, and allele and gene behavior in meiosis. This study found that the high school biology textbooks might be the source of those misconceptions. Based on the misconceptions identified, this study proposed direction for efficient instruction of genetics in high schools.

  • PDF

뉴턴 운동 법칙에서 학년에 따라 나타나는 학생들의 오개념 견고성 (Students년 Stability on the Misconceptions of Newton년s Laws by Grades)

  • 이영직
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제19권2호
    • /
    • pp.93-105
    • /
    • 2000
  • The purpose of the study is to find out students' misconceptions and the stability of misconceptions in the domain of mechanics. According to the incorrect choices by grades, three different kinds of conceptual change were identified ; (1) easily overcome misconceptions, (2) stable misconceptions, and (3) reinforced misconceptions. The analyses of the results showed that easily overcome misconceptions occurred in simple or visual concepts, stable misconceptions occurred in the concepts involving EGC(experiential gestalt of causation) or in the concepts overgeneralized in school teaming, and finally, reinforced misconceptions as grade level increases occurred in the concepts EGC with scientific logical procedures. The results on the type of conceptual changes may provide significant cognitive theoretic evidences on the sources of misconceptions.

  • PDF

선입관(先入觀)의 철학적(哲學的) 배경(背景) 및 오인(誤認)과 과학학습(科學學習)의 관계(關係) (A Study of Philosophical Basis of Preconceptions and Relationship Between Misconceptions and Science Education)

  • 조희형
    • 한국과학교육학회지
    • /
    • 제4권1호
    • /
    • pp.34-43
    • /
    • 1984
  • Since the study of student's preconceptions and their effects on the learning of relevant subjects became an influential research area with high significance, the research area bas mainly been concerned by science educators. However, it was not until the year of 1983 that the area received recognition of various fields other than science education. The recognition was given by the Scientific American when it published a paper reporting a misconceptions in mechanics. Studies concerning misconceptions primarily interested in the following questions: What kinds of theoretical bases do preconceptions or misconceptions have? What are the sources of those conceptions? How are the misconceptions changed into or improved to scientific concepts? What are the efficient teaching methods appropriate for reducing the number of the misconceptions after instruction? Those questions are partly answered by experimental psychology and by philosophy of science, especially epistemology. Therefore, the paper will examine the theoretical background for and the sources of the misconceptions through literature review. Then, a few learning and teaching theories currently carrying great prestige in educational practice will be interpreted in terms of the knowledge of preconceptions or misconceptions.

  • PDF

학생의 과학 오개념에 대한 초등 예비 교사의 지식 (Preservice Elementary School Teachers' Awareness of Students' Misconceptions about Science Topics)

  • 한수진;강석진;노태희
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제29권4호
    • /
    • pp.474-483
    • /
    • 2010
  • In this study, we investigated preservice elementary school teachers' awareness of students' misconceptions about several science topics, and the variables influencing their awareness. Seniors (N=106) from an university of education were asked to predict elementary school students' misconceptions on science topics such as phase changes and dissolution. Their conceptions about teaching and learning were also measured. The results indicated that the preservice teachers' predictions about the kinds and/or the ratios of students' misconceptions were different from those reported in previous studies. The low level preservice teachers in terms of the degrees of possessing traditional conception about teaching and learning predicted more students' common misconceptions. The degrees of preservice teachers' constructivist conception about teaching and learning and their major, however, did not significantly influence the numbers of common misconceptions predicted.

  • PDF

고등학교 생물I의 세포분열, 생식, 수정개념에 대한 오인 분석 (An Analysis of Misconceptions about the Concepts of Cell- division, Reproduction and Fertilization in High School Biology Textbook I)

  • 최승일;조희형
    • 한국과학교육학회지
    • /
    • 제7권1호
    • /
    • pp.1-17
    • /
    • 1987
  • The rectnt studies on the learning of the scientific concepts have suggested that most students have misconceptions related to the contents to be learned and that those misconceptions exert their influences on the subsequent learning of the content Those facts necessitate the identification of the misconceptions before the instructions and the preparation of the instructional materials based on those misconceptions identified. Several studies also revealed that such biological areas as cell division, reproduction and fertilization were ranked among the most difficult areas for high school students to learn. Therefore, this study had its triple objectives as follows: (1) Identification of misconceptions in such areas as cell division, reproduction and fertilization. (2) Investigation of the current high school biology textbook I's as the sources of those misconceptions. (3) Development of teaching materials based on the misconceptions identified and the problems in the textbooks analyzed. This study identified several misconceptions held by high school students of biological concepts related to the conceptual areas of life-continuity, and found the problems in learning of the high school biology textbooks. Based on the misconceptions and the problems, a teaching/learning model and its content material were developed at the final course of this study.

  • PDF

물질의 입자성과 관련된 학생들의 오개념에 대한 중등 교사들의 지식과 인식 (Secondary Science Teachers' Awareness and Perceptions of Students' Misconceptions about the Particulate Nature of Matter)

  • 박지애;한수진;노태희
    • 한국과학교육학회지
    • /
    • 제30권1호
    • /
    • pp.42-53
    • /
    • 2010
  • 교사들이 학생들의 오개념을 아는 것은 구성주의적인 수업 전략을 행하기 위한 가장 기본적인 단계이다. 이 연구에서는 중등 교사들이 물질의 입자성과 관련된 학생들의 오개념을 인지하는 정도를 조사하고, 교사가 제시한 오개념 총 수의 차이를 배경 변인에 따라 분석하였다. 또한, 수업에서 어떻게 오개념을 사용하는지, 그리고 과학 개념을 지도하기 위해 오개념 파악이 필요하다고 생각하는지에 대한 인식도 조사하였다. 서울특별시 28개 중학교의 과학교사 87명을 대상으로 검사를 실시하였으며, 교사들이 제시한 오개념을 중학교 1학년 240명에게서 나타난 오개념과 비교 하였다. 연구 결과, 교사들은 집단적으로는 학생들이 가지고 있는 오개념의 유형을 대부분 알고 있었으나 실제로 학생들에게 많이 나타나는 오개념이 무엇인지는 잘 예상하지 못하였다. 교사가 제시한 오개념 총 수는 교육 경력이 10년 미만이거나 학력이 높거나 전공이 화학인 교사 집단에서 더 많았다. 비록 대부분의 교사들이 학생들의 오개념을 아는 것이 필요하다고 응답하였지만 실제 수업에서는 오개념을 자주 사용하지 않거나 단순한 방식으로 사용하고 있었다. 수업 활동을 통해 학생들의 오개념을 알게 된 교사들이 많았으며 오개념에 관한 자료나 교사 양성 과정, 교사 재교육을 통해 학생들의 오개념에 대해 알게 되었다고 응답한 교사는 드물었다. 이에 대한 교육적 함의를 논의하였다.

Pascual-Leone의 신 피아제 이론에 의한 오개념의 본질에 대한 심리학적 접근 (Psychological Approach on Common Core of Misconceptions by Pascual-Leone's neo Piagetian Theory.)

  • 안수영;권재술
    • 한국과학교육학회지
    • /
    • 제15권2호
    • /
    • pp.185-193
    • /
    • 1995
  • The purpose of this article is to find out psychological mechanism on the core of misconceptions. Theoretical frame to search for the core of misconceptions is based on the Pascual-Leone's neo Piagetian theory. Although Pascual-Leone's theory is a cognitive developmental theory, its psychological mechanism gives us new insights on misconception. According to the comparison between Pascual-Leone's psychological mechanism and the common specifics of misconceptions and their items, conclusions could be summarized as follows: 1) Children's misconceptions and LC learning structures have the same nature. 2) Structures in items of misconceptions and misleading factor structures in cognitive tasks affect mental process with the same mechanism. 3) LC learning structures was activated preferentially in knowledge structures by F operator, with the same activation mechanism, the process children's misconceptions was activated firstly among other conceptions could be explained.

  • PDF

구성주의적 과학교육과 학생의 물리 오개념 지도 (Constructivist Science Education and the Map of Students' Physics Misconceptions)

  • 송진웅
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제42권2호
    • /
    • pp.87-109
    • /
    • 2003
  • This paper aims to review the overall development of constructivist approaches in science education research from two different perspectives, that is a summary of the past development in science education in general and a report of the outline of a recent research project on students' physics misconceptions in particular. In the summary of the past development of constructivist science education the introduction of constructivism as well as its psychological and philosophical backgrounds are briefly reported. Then main findings of the researches of constructivist approach are discussed in terms of the features of students' misconceptions, of the ways of effective conceptual change, of the implications toward school science education, and of the criticisms given to the constructivist approach. In the report of a recent development in addition to its background necessity and implications, the research structure and the format of the data analysis of the study on the map of students' physics misconceptions are presented. It is particularly emphasized that the practical informations and suggestions for actual teaching of school science, such as the database(DB) of students' misconceptions and teaching guides, are of most practical and effective values in order to maximize the advantage of the constructivist approach to science education.

  • PDF