• Title/Summary/Keyword: self-adjoint interpolation

Search Result 11, Processing Time 0.029 seconds

SELF-ADJOINT INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.845-850
    • /
    • 2002
  • Given vectors x and y in a filbert space H, an interpolating operator for vectors is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i=y_i$, for i = 1, 2 …, n. In this article, we investigate self-adjoint interpolation problems for vectors in tridiagonal algebra.

SELF-ADJOINT INTERPOLATION ON Ax = Y IN A TRIDIAGONAL ALGEBRA ALGL

  • PARK, DONGWAN;PARK, JAE HYUN
    • Honam Mathematical Journal
    • /
    • v.28 no.1
    • /
    • pp.135-140
    • /
    • 2006
  • Given vectors x and y in a separable Hilbert space H, an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate self-adjoint interpolation problems for vectors in a tridiagonal algebra: Let AlgL be a tridiagonal algebra on a separable complex Hilbert space H and let $x=(x_i)$ and $y=(y_i)$ be vectors in H.Then the following are equivalent: (1) There exists a self-adjoint operator $A=(a_ij)$ in AlgL such that Ax = y. (2) There is a bounded real sequence {$a_n$} such that $y_i=a_ix_i$ for $i{\in}N$.

  • PDF

SELF-ADJOINT INTERPOLATION ON AX=Y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • Kang, Joo Ho;Lee, SangKi
    • Honam Mathematical Journal
    • /
    • v.36 no.1
    • /
    • pp.29-32
    • /
    • 2014
  • Given operators X and Y acting on a separable Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate self-adjoint interpolation problems for operators in a tridiagonal algebra : Let $\mathcal{L}$ be a subspace lattice acting on a separable complex Hilbert space $\mathcal{H}$ and let X = ($x_{ij}$) and Y = ($y_{ij}$) be operators acting on $\mathcal{H}$. Then the following are equivalent: (1) There exists a self-adjoint operator A = ($a_{ij}$) in $Alg{\mathcal{L}}$ such that AX = Y. (2) There is a bounded real sequence {${\alpha}_n$} such that $y_{ij}={\alpha}_ix_{ij}$ for $i,j{\in}\mathbb{N}$.

SELF-ADJOINT INTERPOLATION ON AX = Y IN $\mathcal{B}(\mathcal{H})$

  • Kwak, Sung-Kon;Kim, Ki-Sook
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.685-691
    • /
    • 2008
  • Given operators $X_i$ and $Y_i$ (i = 1, 2, ${\cdots}$, n) acting on a Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A acting on $\mathcal{H}$ such that $AX_i$ = $Y_i$ for i= 1, 2, ${\cdots}$, n. In this article, if the range of $X_k$ is dense in H for a certain k in {1, 2, ${\cdots}$, n), then the following are equivalent: (1) There exists a self-adjoint operator A in $\mathcal{B}(\mathcal{H})$ stich that $AX_i$ = $Y_i$ for I = 1, 2, ${\cdots}$, n. (2) $sup\{{\frac{{\parallel}{\sum}^n_{i=1}Y_if_i{\parallel}}{{\parallel}{\sum}^n_{i=1}X_if_i{\parallel}}:f_i{\in}H}\}$ < ${\infty}$ and < $X_kf,Y_kg$ >=< $Y_kf,X_kg$> for all f, g in $\mathcal{H}$.

SELF-ADJOINT INTERPOLATION FOR OPERATORS IN TRIDIAGONAL ALGEBRAS

  • Kang, Joo-Ho;Jo, Young-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.423-430
    • /
    • 2002
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_{}i$ = $Y_{i}$ for i/ = 1,2,…, n. In this article, we obtained the following : Let X = ($x_{i\sigma(i)}$ and Y = ($y_{ij}$ be operators in B(H) such that $X_{i\sigma(i)}\neq\;0$ for all i. Then the following statements are equivalent. (1) There exists an operator A in Alg L such that AX = Y, every E in L reduces A and A is a self-adjoint operator. (2) sup ${\frac{\parallel{\sum^n}_{i=1}E_iYf_i\parallel}{\parallel{\sum^n}_{i=1}E_iXf_i\parallel}n\;\epsilon\;N,E_i\;\epsilon\;L and f_i\;\epsilon\;H}$ < $\infty$ and $x_{i,\sigma(i)}y_{i,\sigma(i)}$ is real for all i = 1,2, ....

SELF-ADJOINT INTERPOLATION ON AX = Y IN ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.29 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • Given operators X and Y acting on a Hilbert space $\cal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, we showed the following : Let $\cal{L}$ be a subspace lattice acting on a Hilbert space $\cal{H}$ and let X and Y be operators in $\cal{B}(\cal{H})$. Let P be the projection onto $\bar{rangeX}$. If FE = EF for every $E\in\cal{L}$, then the following are equivalent: (1) $sup\{{{\parallel}E^{\perp}Yf\parallel\atop \parallel{E}^{\perp}Xf\parallel}\;:\;f{\in}\cal{H},\;E\in\cal{L}\}\$ < $\infty$, $\bar{range\;Y}\subset\bar{range\;X}$, and < Xf, Yg >=< Yf,Xg > for any f and g in $\cal{H}$. (2) There exists a self-adjoint operator A in Alg$\cal{L}$ such that AX = Y.

SELF-ADJOINT INTERPOLATION ON Ax = y IN CSL-ALGEBRA ALGL

  • Kang, Joo-Ho;Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.503-510
    • /
    • 2004
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i\;=\;y_i,\;for\;i\;=\;1,\;2,\;\cdots,\;n$. In this paper the following is proved: Let H be a Hilbert space and L be a commutative subspace lattice on H. Let H and y be vectors in H. Let $M_x\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_ix\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;and\;M_y\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_iy\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}. Then the following are equivalent. (1) There exists an operator A in AlgL such that Ax = y, Af = 0 for all f in ${\overline{M_x}}^{\bot}$, AE = EA for all $E\;{\in}\;L\;and\;A^{*}\;=\;A$. (2) $sup\;\{\frac{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;<\;{\infty},\;{\overline{M_u}}\;{\subset}{\overline{M_x}}$ and < Ex, y >=< Ey, x > for all E in L.

SELF-ADJOINT INTERPOLATION PROBLEMS IN ALGL

  • Kang, Joo-Ho;Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.387-395
    • /
    • 2004
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_{i}\;=\;Y_{i}$, for i = 1,2,...,n. In this article, we showed the following: Let H be a Hilbert space and let L be a subspace lattice on H. Let X and Y be operators acting on H. Assume that range(X) is dense in H. Then the following statements are equivalent: (1) There exists an operator A in AlgL such that AX = Y, $A^{*}$ = A and every E in L reduces A. (2) sup ${\frac{$\mid$$\mid${\sum_{i=1}}^n\;E_iYf_i$\mid$$\mid$}{$\mid$$\mid${\sum_{i=1}}^n\;E_iXf_i$\mid$$\mid$}$:n{\epsilon}N,f_i{\epsilon}H\;and\;E_i{\epsilon}L}\;<\;{\infty}$ and = for all E in L and all f, g in H.

SELF-ADJOINT INTERPOLATION ON Ax = y IN ALG$\cal{L}$

  • Kwak, Sung-Kon;Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.981-986
    • /
    • 2011
  • Given vectors x and y in a Hilbert space $\cal{H}$, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equations $Tx_i=y_i$, for i = 1, 2, ${\cdots}$, n. In this paper the following is proved : Let $\cal{L}$ be a subspace lattice on a Hilbert space $\cal{H}$. Let x and y be vectors in $\cal{H}$ and let $P_x$ be the projection onto sp(x). If $P_xE=EP_x$ for each $E{\in}\cal{L}$, then the following are equivalent. (1) There exists an operator A in Alg$\cal{L}$ such that Ax = y, Af = 0 for all f in $sp(x)^{\perp}$ and $A=A^*$. (2) sup $sup\;\{\frac{{\parallel}E^{\perp}y{\parallel}}{{\parallel}E^{\perp}x{\parallel}}\;:\;E\;{\in}\;{\cal{L}}\}$ < ${\infty}$, $y\;{\in}\;sp(x)$ and < x, y >=< y, x >.

Self-Adjoint Interpolation Problems in ALGL

  • 강주호;조영수
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.4.1-4
    • /
    • 2003
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX= Y. An interpolating operator for n-operators satisfies the equation AXi= Yi, for i = 1,2,...,n, In this article, we showed the following : Let H be a Hilbert space and let L be a subspace lattice on H. Let X and Y be operators acting on H. Assume that rangeX is dense in H. Then the following statements are equivalent : (1) There exists an operator A in AlgL such that AX = Y, A$\^$*/=A and every E in L reduces A. (2) sup{(equation omitted) : n $\in$ N f$\sub$I/ $\in$ H and E$\sub$I/ $\in$ L}<$\infty$ and = for all E in L and all f, g in H.

  • PDF