• Title/Summary/Keyword: semi-stability

Search Result 315, Processing Time 0.023 seconds

A SEMI-LAGRANGIAN METHOD BASED ON WENO INTERPOLATION

  • Yi, Dokkyun;Kim, Hyunsook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.623-633
    • /
    • 2015
  • In this paper, a general Weighted Essentially Non-Oscillatory (WENO) interpolation is proposed and applied to a semi-Lagrangian method. The proposed method is based on the conservation law, and characteristic curves are used to complete the semi-Lagrangian method. Therefore, the proposed method satisfies conservation of mass and is free of the CFL condition which is a necessary condition for convergence. Using a several standard examples, the proposed method is compared with the third order Strong Stability Preserving (SSP) Runge-Kutta method to verify the high-order accuracy.

Seismic Response Control of Bridge Structure using Fuzzy-based Semi-active Magneto-rheological Dampers

  • Park, Kwan-Soon;Ok, Seung-Yong;Seo, Chung-Won
    • International Journal of Safety
    • /
    • v.10 no.1
    • /
    • pp.22-31
    • /
    • 2011
  • Seismic response control method of the bridge structures with semi-active control device, i.e., magneto-rheological (MR) damper, is studied in this paper. Design of various kinds of clipped optimal controller and fuzzy controller are suggested as a semi-active control algorithm. For determining the control force of MR damper, clipped optimal control method adopts bi-state approach, but the fuzzy control method continuously quantifies input currents through fuzzy inference mechanism to finely modulate the damper force. To investigate the performances of the suggested control techniques, numerical simulations of a multi-span continuous bridge system subjected to various earthquakes are performed, and their performances are compared with each other. From the comparison of results, it is shown that the fuzzy control system can provide well-balanced control force between girder and pier in the view point of structural safety and stability and be quite effective in reducing both girder and pier displacements over the existing control method.

  • PDF

Semi-interpenetrating Solid Polymer Electrolyte for LiCoO2-based Lithium Polymer Batteries Operated at Room Temperature

  • Nguyen, Tien Manh;Suk, Jungdon;Kang, Yongku
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.250-255
    • /
    • 2019
  • Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) show promise for improving the lithium ion battery safety. However, due to oxidation of the PEO group and corrosion of the Al current collector, PEO-based SPEs have not previously been effective for use in $LiCoO_2$ (LCO) cathode materials at room temperature. In this paper, a semi-interpenetrating polymer network (semi-IPN) PEO-based SPE was applied to examine the performance of a LCO/SPE/Li metal cell at different voltage ranges. The results indicate that the SPE can be applied to LCO-based lithium polymer batteries with high electrochemical performance. By using a carbon-coated aluminum current collector, the Al corrosion was mostly suppressed during cycling, resulting in improvement of the cell cycle stability.

Neuro-Control of Seismically Excited Structures using Semi-active MR Fluid Damper (반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.313-320
    • /
    • 2002
  • A new semi-active control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system consists of the improved neuro-controller and the bang-bang-type controller. The improved neuro-controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then the bang-bang-type controller causes the MR fluid damper to generate the desired control force, so long as this force is dissipative. In numerical simulation, a three-story building structure is semi-actively controlled by the trained neural network under the historical earthquake records. The simulation results show that the proposed semi-active neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semi-active control system using MR fluid dampers has many attractive features, such as the bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semi-active neuro-control strategy using MR fluid dampers could be effectively used for control of seismically excited structures.

  • PDF

Vibration reduction of a pipe conveying fluid using the semi-active electromagnetic damper

  • Kavianipour, Omid
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.175-187
    • /
    • 2017
  • This paper deals with a uniform cantilever Euler-Bernoulli beam subjected to follower and transversal force at its free end as a model for a pipe conveying fluid under electromagnetic damper force. The electromagnetic damper is composed of a permanent-magnet DC motor, a ball screw and a nut. The main objective of the current work is to reduce the pipe vibration resulting from the fluid velocity and allow it to transform into electric energy. To pursue this goal, the stability and vibration of the beam model was studied using Ritz and Newmark methods. It was observed that increasing the fluid velocity results in a decrease in the motion of the free end of the pipe. The results of simulation showed that the designed semiactive electromagnetic damper controlled by on-off damping control strategy decreased the vibration amplitude of the pipe about 5.9% and regenerated energy nearly 1.9 (mJ/s). It was also revealed that the designed semi-active electromagnetic damper has better performance and more energy regeneration than the passive electromagnetic damper.

A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS

  • Zhang, Tie;Liu, Jingna
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.665-678
    • /
    • 2014
  • We present a new space-time discontinuous Galerkin (DG) method for solving the time dependent, positive symmetric hyperbolic systems. The main feature of this DG method is that the discrete equations can be solved semi-explicitly, layer by layer, in time direction. For the partition made of triangle or rectangular meshes, we give the stability analysis of this DG method and derive the optimal error estimates in the DG-norm which is stronger than the $L_2$-norm. As application, the wave equation is considered and some numerical experiments are provided to illustrate the validity of this DG method.

GAUSSIAN QUADRATURE FORMULAS AND LAGUERRE-PERRON@S EQUATION

  • HAJJI S. EL;TOUIJRAT L.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.205-228
    • /
    • 2005
  • Let I(f) be the integral defined by : $I(f) = \int\limits_{a}^{b} f(x)w(x)dx$ with f a given function, w a nonclassical weight function and [a, b] an interval of IR (of finite or infinite length). We propose to calculate the approximate value of I(f) by using a new scheme for deriving a non-linear system, satisfied by the three-term recurrence coefficients of semi-classical orthogonal polynomials. Finally we studies the Stability and complexity of this scheme.

Stock Trading Model using Portfolio Optimization and Forecasting Stock Price Movement (포트폴리오 최적화와 주가예측을 이용한 투자 모형)

  • Park, Kanghee;Shin, Hyunjung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.535-545
    • /
    • 2013
  • The goal of stock investment is earning high rate or return with stability. To accomplish this goal, using a portfolio that distributes stocks with high rate of return with less variability and a stock price prediction model with high accuracy is required. In this paper, three methods are suggested to require these conditions. First of all, in portfolio re-balance part, Max-Return and Min-Risk (MRMR) model is suggested to earn the largest rate of return with stability. Secondly, Entering/Leaving Rule (E/L) is suggested to upgrade portfolio when particular stock's rate of return is low. Finally, to use outstanding stock price prediction model, a model based on Semi-Supervised Learning (SSL) which was suggested in last research was applied. The suggested methods were validated and applied on stocks which are listed in KOSPI200 from January 2007 to August 2008.

UNCONDITIONALLY STABLE GAUGE-UZAWA FINITE ELEMENT METHODS FOR THE DARCY-BRINKMAN EQUATIONS DRIVEN BY TEMPERATURE AND SALT CONCENTRATION

  • Yangwei Liao;Demin Liu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.93-115
    • /
    • 2024
  • In this paper, the Gauge-Uzawa methods for the Darcy-Brinkman equations driven by temperature and salt concentration (DBTC) are proposed. The first order backward difference formula is adopted to approximate the time derivative term, and the linear term is treated implicitly, the nonlinear terms are treated semi-implicit. In each time step, the coupling elliptic problems of velocity, temperature and salt concentration are solved, and then the pressure is solved. The unconditional stability and error estimations of the first order semi-discrete scheme are derived, at the same time, the unconditional stability of the first order fully discrete scheme is obtained. Some numerical experiments verify the theoretical prediction and show the effectiveness of the proposed methods.

Geometrically nonlinear analysis of plane frames composed of flexibly connected members

  • Gorgun, H.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.277-309
    • /
    • 2013
  • Beam-to-column connections behaviour plays an important role in the analysis and design of steel and precast concrete structures. The paper presents a computer-based method for geometrically nonlinear frames with semi-rigid beam-to-column connections. The analytical procedure employs modified stability functions to model the effect of axial force on the stiffness of members. The member modified stiffness matrix, and the modified fixed end forces for various loads were found. The linear and nonlinear analyses were applied for two planar steel structures. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks.