• Title/Summary/Keyword: semiconductor radiation detector

Search Result 68, Processing Time 0.022 seconds

Evaluation of a Fabricated Charge Sensitive Amplifier for a Semiconductor Radiation Detector

  • Kim, Han-Soo;Ha, Jang-Ho;Park, Se-Hwan;Lee, Jae-Hyung;Lee, Cheol-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.2
    • /
    • pp.81-84
    • /
    • 2010
  • A CSA(Charge Sensitive Amplifier) was designed and fabricated for application in a radiation detection system based on a semiconductor detector such as Si, SiC, CdZnTe and etc.. A fabricated hybrid.type CSA was evaluated by comparison with a commercially available CSA. A comparison was performed by using calculation of ENC (Equivalent Noise Charge) and by using energy resolutions of fabricated radiation detectors based on Si. In energy resolution comparison, a fabricated CSA showed almost the same performance compared with a commercial one. In this study, feasibility of a fabricated CSA was discussed.

Development and Application of the Semiconductor Neutron Radiation Detector (반도체 중성자 탐지소자 개발 및 응용)

  • Lee, Nam-Ho;Lee, Hong-Kyu;Youk, Young-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.299-304
    • /
    • 2011
  • In this paper, we developed the semiconductor neutron radiation detector and the multi-purpose radiation detection technologies for the next generation military personal surveymeter. The PIN type semiconductor neutron detector and the prototype measure the neutron radiation dose upto 1,000cGy with ${\pm}20%$ error. It also have a good performance about the Gamma, Alpha and Beta radiation and MIL-STD-810F.

EFFECT OF METAL CONTACT ON THE CZT DETECTOR PERFORMANCE

  • Park, Se-Hwan;Park, Hyung-Sik;Lee, Jae-Hyung;Kin, Han-Soo;Ha, Jang-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.65-68
    • /
    • 2009
  • Metal-semiconductor contact is very important for the operating property of semiconductor detector. $Cd_{0.96}$ $Zn_{0.04}$ Te semiconductor crystal was grown with Bridgman method, and the crystal was cut and polished. EPMA (Electron Probe Micro Analyzer) and ICP-MS (Inductively Coupled Plasma Mass Spectrometry) analysis were done to obtain the chemical composition and impurity of the crystal. Metal contact was deposited with thermal evaporator on both sides of the crystal. Detectors with Au/CZT/Au and In/CZT/Au structure were made, and I-V curve and the energy spectrum were measured with the detectors. It could be seen that the detector with the In/CZT/Au structure has superior property than the detector with Au/CZT/Au structure when the crystal resistivity was low. However, the metal contact structure effect becomes low when the crystal resistivity was high.

Implementation of Electronic Personal Dosimeter Using Silicon PIN Photodiode (실리콘 핀 포토다이오드를 이용한 능동형 방사선 피폭 전자선량계의 구현)

  • 이운근;백광렬;권석근
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.296-303
    • /
    • 2003
  • A personal portable type electronic dosimeter using silicon PIN photodiode and small GM tube is recently attracting much attention due to its advantages such as an immediate indication function of dose and dose rate, alerting function, and efficient management of radiation exposure history and dose data. We designed and manufactured a semiconductor radiation detector aimed to directly measure X-ray and v-ray irradiated in silicon PIN photodiode, without using high-priced scintillation materials. Using this semiconductor radiation detector, we developed an active electronic dosimeter, which measures the exposure dose using pulse counting method. In this case, it has a shortcoming of over-evaluating the dose that shows the difference between the dose measured with electronic dosimeter and the dose exposed to the human body in a low energy area. We proposed an energy compensation filter and developed a dose conversion algorithm to make both doses indicated on the detector and exposed to the human body proportional to each other, thus enabling a high-precision dose measurement. In order to prove its reliability in conducting personal dose measurement, crucial for protecting against radiation, the implemented electronic dosimeter was evaluated to successfully meet the IEC's criteria, as the KAERI (Korea Atomic Energy Research Institute) conducted test on dose indication accuracy, and linearity, energy and angular dependences.

CURRENT TRENDS IN IONIZING RADIATION DETECTION

  • Wehe David K.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.311-318
    • /
    • 2006
  • Ionizing radiation is a both a natural and man-made phenomena that plays a major role in contemporary applications. The detection of this radiation has evolved over the past several decades from simple observations to precise measurements in space, time, and energy, even in harsh environmental conditions. Tn this paper, we present a snapshot of the current state-of-the-art in radiation measurement technology, highlighting the major applications and detector developments.

Radiation Damage of SiC Detector Irradiated by High Dose Gamma Rays

  • Kim, Yong-Kyun;Kang, Sang-Mook;Park, Se-Hwan;Ha, Jang-Ho;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.87-90
    • /
    • 2006
  • Two SiC radiation detector samples were irradiated by Co-60 gamma rays. The irradiation was performed with dose rates of 5 kGy/hour and 15 kGy/hour for 8 hours, respectively. Metal/semiconductor contacts on the surface were fabricated by using a thermal evaporator in a high vacuum condition. The SiC detectors have metal contacts of Au(2000 ${\AA}$)/Ni(300 ${\AA}$) at Si-face and of Au(2000 ${\AA}$)/Ti(300 ${\AA}$) at C-face. I-V characteristics of the SiC semiconductor were measured by using the Keithley 4200-SCS parameter analyzer with voltage sources included. From the I-V curve, we analyzed the Schottky barrier heights(SBHs) on the basis of the thermionic emission theory. As a result, the 6H-SiC semiconductor showed- similar Schottky barrier heights independent to the dose rates of the irradiation with Co-60 gamma rays.

  • PDF

Development of Electronic Personal Dosimeter with Hybrid Preamplifier using Semiconductor Detector (반도체 검출기를 이용한 Hybrid 전치증폭기형 전자식 개인선량계 개발)

  • Lee, B.J.;Kim, B.H.;Chang, S.Y.;Kim, J.S.;Rho, S.R.
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.51-57
    • /
    • 2002
  • An electronic personal dosimeter(EPD) with hybrid type preamplifier adopting a semiconductor detector as a radiation detector has been developed, manufactured and test-evaluated. The radiation detection characteristics of this EPD has been performance-tested by using a reference photon radiation field. After several test-irradiations to a $^{137}Cs$ gamma radiation source the radiation detection sensitivity of this EPD appeared to be $3.8\;cps/Gy{\cdot}h^{-1}$. The linearity of radiation response was kept within 8% of the dose equivalent ranges of $10{\mu}Sv{\sim}4Sv$ and the angular dependence was under less than 4% in angles of ${\pm}60^{\circ}$. It was confirmed that the energy response range was in $60{\sim}1,250keV$ given in the ISO standard. This EPD satisfied the international criteria for the EPD in the mechanical and the environmental performance test for 9 test categories according to IEC 61526.

A Study on Dose Distribution of Electron Beams by Semiconductor Detector (반도체 검출기에 의한 전자선 선량분포에 관한 연구)

  • Kang, Wee-Saing;Ha, Sung-Whan;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.1
    • /
    • pp.19-25
    • /
    • 1984
  • There is not yet an universal method of electron dosimetry. The Authors measured dose distributions of the electron beams from Clinac-18 by means of silicon detector connected to X-Y recorder, and compared them in water phantom with dose distributions measured by film and ion chamber, both inserted in polystyrene phantom. The results are as followings, 1. Dose in build-up region increased with the field size for all energy, and depth dose profiles of $6{\sim}12MeV$ beam under the depth of maximum dose were independent of field size, but those of 15 and 18 MeV beam were dependent on the field size. 2. The widths of penumbra by semiconductor detector were narrower than those by film for same energy beam. 3. Depth dose profiles by three different dosimeter did not coincide each other. In the build-up region, dose by semiconductor detector was lower than that by any other dosimeter.

  • PDF

The Study on Design of Semiconductor Detector for Checking the Position of a Radioactive Source in an NDT (비파괴검사 분야에서 방사선원의 위치 확인을 위한 반도체 검출기 설계에 관한 연구)

  • Kim, Kyo-Tae;Kim, Joo-Hee;Han, Moo-Jae;Heo, Ye-Ji;Ahn, Ki-Jung;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.171-175
    • /
    • 2017
  • In the non-destructive inspection field, we invest a lot of time and resources in developing the radiation source system to ensure the safety of the workers. However, the probability of accidents is still high. In order to prevent potential radiation accidents in advance, it is necessary to directly verify the position of the radiation source, but the research is still insufficient. In this study, we developed a monitoring system that can detect the position of the radiation source in the source guide tube in the gamma-ray irradiator. The characteristics of the radiation detector are estimated by monte carlo simulation. As a result, the radiation detector for Ir-192 gamma-ray energy was analyzed to have secondary electron equilibrium at $150{\mu}m$ regardless of the semiconductor material. Also, it is expected that the gamma ray response characteristic is the best in $HgI_2$. These results are expected to be used as a basis for determining the optimal thickness of the radiation detector located in the detection part of the future monitoring system. In addition, when developing a monitoring system based on this, radiation workers can easily recognize the danger and secure safety, as well as prevent and preemptively respond to potential radiation accidents.