• Title/Summary/Keyword: sensitivity analysis

Search Result 2,787, Processing Time 0.204 seconds

A Study on the Ride Quality Enhancement of the High-speed Electric Multiple Unit (동력분산형 고속열차의 승차감 개선에 관한 연구)

  • Jeon, Chang-Sung;Kim, Sang-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.561-567
    • /
    • 2018
  • This study was carried out to improve the ride quality of high-speed electric multiple unit. Through dynamic analysis of the HEMU-430X, the range of the equivalent conicity with a critical speed of 300 km/h was between 0.05 and 0.25. The initial adopted wheel profile of HEMU-430X was S1002. The equivalent conicity of S1002 with the mileage of more than 40,000 km was about 0.033 and it was confirmed that XP55 is more suitable for stable operation because XP55 has the equivalent conicity of over 0.061. In order to improve ride quality of high-speed electric multiple unit, the change of installation angle of the yaw damper was suggested from $7.35^{\circ}$ to $0^{\circ}$. From sensitivity analysis and optimization, the air spring lateral and vertical stiffness was suggested to be reduced by 30% and the secondary vertical and lateral damper damping coefficient was increased by 50%. By applying this, it was expected that the car body acceleration could be improved by about 20% on average. The HEMU-430X's yaw damper installation angle was changed to $0^{\circ}$ and the damping coefficient of the lateral damper was increased by 30%. When the test run was carried out at the speed of 300 km/h on the Kyungbu high-speed line, the vehicle lateral acceleration had improved by 34.3%. The effect of additional improvement measures proposed in this paper will be tested in the on track test. The riding quality improvement process used in this study can be used to solve ride quality problems that can occur in commercial operation of high-speed electric multiple unit in the future.

A Design Method Considering Torque and Torque-ripple of Interior Permanent Magnet Synchronous Motor by Response Surface Methodology (반응표면분석법에 의한 매입형영구자석동기전동기의 토크와 토크리플을 고려한 설계기법)

  • Baek, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.557-564
    • /
    • 2019
  • The characteristics of the torque and torque ripple of Interior Permanent Magnet Synchronous Motor(IPMSM) are influenced by the size and position of the rotor magnet and the size of the stator slot. This paper deals with the optimal design method for improving torque and torque ripplerate for IPMSM using Response Surface Methodology(RSM). Two objective functions of torque output and torque ripple were derived from the sensitivity analysis by Plackett-Burmann(PB) for the characteristic variables affecting torque and torque ripple. Secondary characteristic variables were selected from the derived objective function and RSM secondary regression model function was estimated by the experiment schedule and analysis results according to the Central Composite Design (CCD). The reliability of the secondary regression model was verified using ANOVA table. The analysis according to the experimental schedule was verified by JMAG(Ver. 18.0) which is Finite Element Method(FEM) software. The torque output of IPMSM applied with final characteristic variables was increased torque output by 11.5 % and the torque ripplerate was reduced by 9.1 %.

Sensitivity Analysis of Wake Diffusion Patterns in Mountainous Wind Farms according to Wake Model Characteristics on Computational Fluid Dynamics (전산유체역학 후류모델 특성에 따른 산악지형 풍력발전단지 후류확산 형태 민감도 분석)

  • Kim, Seong-Gyun;Ryu, Geon Hwa;Kim, Young-Gon;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.265-278
    • /
    • 2022
  • The global energy paradigm is rapidly changing by centering on carbon neutrality, and wind energy is positioning itself as a leader in renewable energy-based power sources. The success of onshore and offshore wind energy projects focuses on securing the economic feasibility of the project, which depends on securing high-quality wind resources and optimal arrangement of wind turbines. In the process of constructing the wind farm, the optimal arrangement method of wind turbines considering the main wind direction is important, and this is related to minimizing the wake effect caused by the fluid passing through the structure located on the windward side. The accuracy of the predictability of the wake effect is determined by the wake model and modeling technique that can properly simulate it. Therefore, in this paper, using WindSim, a commercial CFD model, the wake diffusion pattern is analyzed through the sensitivity study of each wake model of the proposed onshore wind farm located in the mountainous complex terrain in South Korea, and it is intended to be used as basic research data for wind energy projects in complex terrain in the future.

Does Social Responsibility Activities Keep Future Earnings Sustainability? (사회적 책임활동은 기업의 이익을 지속시키는가?)

  • Park, Sung-Jin;Sun, Eun-Jung
    • Management & Information Systems Review
    • /
    • v.38 no.3
    • /
    • pp.187-210
    • /
    • 2019
  • Companies shall hold social responsibility as a member of the social community. Corporate social responsibility uses corporate resources, yet it plays important roles in reducing social imbalance. Their responsibilities are highly associated with the corporate sustainability. Many earlier studies on the association between corporate social responsibility and corporate sustainability have been attempted. Yet it should be mentioned that they do not show a variety of realities as linearity between dependent variables and independent variables were assumed. Thus, this study aims to analyze Markov blanket, a node of minimum descriptive variables that relieve a rigid assumption among variables and affect corporate sustainability by using Bayesian network. Sensitivity analysis was used to elicit how other variables affect by reflecting the complex reality when real factors are changed. As an important result of this study, the firm's future earnings sustainability is naturally related to operating earnings, and as the corporate governance structure is sound, the firm is able to steadily fulfill its social responsibility. However, the fact that the size of a company is large does not mean that it is in good compliance with corporate laws. This would not be unrelated to the fact that many of today's companies are not complying with the law and are suffering social condemnation. Results from this study will serve as a useful analytic tool when investors and creditors showing interests in corporate sustainability for assessing the value of companies and making investment decisions. Moreover, they can be used as references for relevant agency supervising capital markets to establish or improve appropriate institutions aimed at improving corporate sustainability.

Estimation of Optimal Size of the Treatment Facility for Nonpoint Source Pollution due to Watershed Development (비점오염원의 정량화방안에 따른 적정 설계용량결정)

  • Kim, Jin-Kwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.149-153
    • /
    • 2008
  • The pollutant capacity occurred before and after the development of a watershed should be quantitatively estimated and controlled for the minimization of water contamination. The Ministry of Environment suggested a guideline for the legal management of nonpoint source from 2006. However, the rational method for the determination of treatment capacity from nonpoint source proposed in the guideline has the problem in the field application because it does not reflect the project based cases and overestimates the pollutant load to be reduced. So, we perform the standard rainfall analysis by analytical probabilistic method for the estimation of an additional pollutant load occurred by a project and suggest a methodology for the estimation of contaminant capacity instead of a simple rational method. The suggested methodology in this study could determine the reasonable capacity and efficiency of a treatment facility through the estimation of pollutant load from nonpoint source and from this we can manage the watershed appropriately. We applied a suggested methodology to the projects of housing land development and a dam construction in the watersheds. When we determine the treatment capacity by a rational method without consideration of the types of projects we should treat the 90% of pollutant capacity occurred by the development and to do so, about 30% of the total cost for the development should be invested for the treatment facility. This requires too big cost and is not realistic. If we use the suggested method the target pollutant capacity to be reduced will be 10 to 30% of the capacity occurred by the development and about 5 to 10% of the total cost can be used. The control of nonpoint source must be performed for the water resources management. However it is not possible to treat the 90% of pollutant load occurred by the development. The proper pollutant capacity from nonpoint source should be estimated and controlled based on various project types and in reality, this is very important for the watershed management. Therefore the results of this study might be more reasonable than the rational method proposed in the Ministry of Environment.

Design Anamorphic Lens Thermal Optical System that Focal Length Ratio is 3:1 (초점거리 비가 3:1인 아나모픽 렌즈 열상 광학계 설계)

  • Kim, Se-Jin;Ko, Jung-Hui;Lim, Hyeon-Seon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.4
    • /
    • pp.409-415
    • /
    • 2011
  • Purpose: To design applied anamorphic lens that focal length ratio is 3:1 optical system to improve detecting distance. Methods: We defined a boundary condition as $50^{\circ}{\sim}60^{\circ}$ for viewing angle, horizontal direction 36mm, vertical direction 12 mm for focal length, f-number 4, $15{\mu}m{\times}15{\mu}m$ for pixel size and limit resolution 25% in 33l p/mm. Si, ZnS and ZnSe as a materials were used and 4.8 ${\mu}m$, 4.2 ${\mu}m$, 3.7 ${\mu}m$ as a wavelength were set. optical performance with detection distance, narcissus and athermalization in designed camera were analyzed. Results: F-number 4, y direction 12 mm and x direction 36 mm for focal length of the thermal optical system were satisfied. Total length of the system was 76 mm so that an overall volume of the system was reduced. Astigmatism and spherical aberration was within ${\pm}$0.10 which was less than 2 pixel size. Distortion was within 10% so there was no matter to use as a thermal optical camera. MTF performance for the system was over 25% from 33l p/mm to full field so it was satisfied with the boundary condition. Designed optical system was able to detect up to 2.9 km and reduce a diffused image by decreasing a narcissus value from all surfaces except the 4th surface. From sensitivity analysis, MTF resolution was increased on changing temperature with the 5th lens which was assumed as compensation. Conclusions: Designed optical system which used anamorphic lens was satisfied with boundary condition. an increasing resolution with temperature, longer detecting distance and decreasing of narcissus were verified.

Data-driven Analysis for Developing the Effective Groundwater Management System in Daejeong-Hangyeong Watershed in Jeju Island (제주도 대정-한경 유역 효율적 지하수자원 관리를 위한 자료기반 연구)

  • Lee, Soyeon;Jeong, Jiho;Kim, Minchul;Park, Wonbae;Kim, Yuhan;Park, Jaesung;Park, Heejeong;Park, Gyeongtae;Jeong, Jina
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.373-387
    • /
    • 2021
  • In this study, the impact of clustered groundwater usage facilities and the proper amount of groundwater usage in the Daejeong-Hangyeong watershed of Jeju island were evaluated based on the data-driven analysis methods. As the applied data, groundwater level data; the corresponding precipitation data; the groundwater usage amount data (Jeoji, Geumak, Seogwang, and English-education city facilities) were used. The results show that the Geumak usage facility has a large influence centering on the corresponding location; the Seogwang usage facility affects on the downstream area; the English-education usage facility has a great impact around the upstream of the location; the Jeoji usage facility shows an influence around the up- and down-streams of the location. Overall, the influence of operating the clustered groundwater usage facilities in the watershed is prolonged to approximately 5km. Additionally, the appropriate groundwater usage amount to maintain the groundwater base-level was analyzed corresponding to the precipitation. Considering the recent precipitation pattern, there is a need to limit the current amount of groundwater usage to 80%. With increasing the precipitation by 100mm, additional groundwater development of approximately 1,500m3-1,900m3 would be reasonable. All the results of the developed data-driven estimation model can be used as useful information for sustainable groundwater development in the Daejeong-Hangyeong watershed of Jeju island.

Performance Analysis of a Deep Vertical Closed-Loop Heat Exchanger through Thermal Response Test and Thermal Resistance Analysis (열응답 실험 및 열저항 해석을 통한 장심도 수직밀폐형 지중열교환기의 성능 분석)

  • Shim, Byoung Ohan;Park, Chan-Hee;Cho, Heuy-Nam;Lee, Byeong-Dae;Nam, Yujin
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.459-467
    • /
    • 2016
  • Due to the limited areal space for installation, borehole heat exchangers (BHEs) at depths deeper than 300 m are considered for geothermal heating and cooling in the urban area. The deep vertical closed-loop BHEs are unconventional due to the depth and the range of the typical installation depth is between 100 and 200 m in Korea. The BHE in the study consists of 50A (outer diameter 50 mm, SDR 11) PE U-tube pipe in a 150 mm diameter borehole with the depth of 300 m. In order to compensate the buoyancy caused by the low density of PE pipe ($0.94{\sim}0.96g/cm^3$) in the borehole filled with ground water, 10 weight band sets (4.6 kg/set) were attached to the bottom of U-tube. A thermal response test (TRT) and fundamental basic surveys on the thermophysical characteristics of the ground were conducted. Ground temperature measures around $15^{\circ}C$ from the surface to 100 m, and the geothermal gradient represents $1.9^{\circ}C/100m$ below 100 m. The TRT was conducted for 48 hours with 17.5 kW heat injection, 28.65 l/min at a circulation fluid flow rate indicates an average temperature difference $8.9^{\circ}C$ between inlet and outlet circulation fluid. The estimated thermophysical parameters are 3.0 W/mk of ground thermal conductivity and 0.104 mk/W of borehole thermal resistance. In the stepwise evaluation of TRT, the ground thermal conductivity was calculated at the standard deviation of 0.16 after the initial 13 hours. The sensitivity analysis on the borehole thermal resistance was also conducted with respect to the PE pipe diameter and the thermal conductivity of backfill material. The borehole thermal resistivity slightly decreased with the increase of the two parameters.

Fate Analysis and Impact Assessment for Vehicle Polycyclic Aromatic Hydrocarbons (PAHs) Emitted from Metropolitan City Using Multimedia Fugacity Model (다매체거동모델을 이용한 대도시 자동차 배출 Polycyclic Aromatic Hydrocarbons (PAHs) 거동 해석 및 영향평가)

  • Rhee, Gahee;Hwangbo, Soonho;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.479-495
    • /
    • 2018
  • This study was carried out to research the multimedia fate modeling, concentration distribution and impact assessment of polycyclic aromatic hydrocarbons (PAHs) emitted from automobiles, which are known as carcinogenic and mutation chemicals. The amount of emissions of PAHs was determined based on the census data of automobiles at a target S-city and emission factors of PAHs, where multimedia fugacity modeling was conducted by the restriction of PAHs transfer between air-soil at the impervious area. PAHs' Concentrations and their distributions at several environmental media were predicted by multimedia fugacity model (level III). The residual amounts and the distributions of PAHs through mass transfer of PAHs between environment media were used to assess the health risk of PAHs at unsteady state (level IV), where the sensitivity analyses of the model parameter of each variable were conducted based on Monte Carlo simulation. The experimental result at S-city showed that Fluoranthene among PAHs substances are the highest residual concentrations (60%, 53%, 32% and 34%) at all mediums (atmospheric, water, soil, sediment), respectively, where most of the PAHs were highly accumulated in the sediment media (more than 80%). A result of PAHs concentration changes in S-city over the past 34 years identified that PAHs emissions from all environmental media increased from 1983 to 2005 and decreased until 2016, where the emission of heavy-duty vehicle including truck revealed the largest contribution to the automotive emissions of PAHs at all environment media. The PAHs concentrations in soil and water for the last 34 years showed the less value than the legal standards of PAHs, but the PAHs in air exceeded the air quality standards from 1996 to 2016. The result of this study is expected to contribute the effective management and monitoring of toxic chemicals of PAHs at various environment media of Metropolitan city.

Effect of Bottom Hole Pressure and Depressurization Rate on Stability and Gas Productivity of Hydrate-bearing Sediments during Gas Production by Depressurization Method (감압법을 이용한 가스 생산 시 하이드레이트 부존 퇴적층의 지반 안정성 및 가스 생산성에 대한 시추 공저압 및 감압 속도의 영향)

  • Kim, Jung-Tae;Kang, Seok-Jun;Lee, Minhyeong;Cho, Gye-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.3
    • /
    • pp.19-30
    • /
    • 2021
  • The presence of the hydrate-bearing sediments in Ulleung Basin of South Korea has been confirmed from previous studies. Researches on gas production methods from the hydrate-bearing sediments have been conducted worldwide. As production mechanism is a complex phenomenon in which thermal, hydraulic, and mechanical phenomena occur simultaneously, it is difficult to accurately conduct the productivity and stability analysis of hydrate bearing sediments through lab-scale experiments. Thus, the importance of numerical analysis in evaluating gas productivity and stability of hydrate-bearing sediments has been emphasized. In this study, the numerical parametric analysis was conducted to investigate the effects of the bottom hole pressure and the depressurization rate on the gas productivity and stability of hydrate-bearing sediments during the depressurization method. The numerical analysis results confirmed that as the bottom hole pressure decreases, the productivity increases and the stability of sediments deteriorates. Meanwhile, it was shown that the depressurization rate did not largely affect the productivity and stability of the hydrate-bearing sediments. In addition, sensitivity analysis for gas productivity and stability of the sediments were conducted according to the depressurization rate in order to establish a production strategy that prevents sand production during gas production. As a result of the analysis, it was confirmed that controlling the depressurization rate from a low value to a high value is effective in securing the stability. Moreover, during gas production, the subsidence of sediments occurred near the production well, and ground heave occurred at the bottom of the production well due to the pressure gradient. From these results, it was concluded that both the productivity and stability analyses should be conducted in order to determine the bottom hole pressure when producing gas using the depressurization method. Additionally, the stress analysis of the production well, which is induced by the vertical displacements of sediments, should be evaluated.