• Title/Summary/Keyword: series involving the Zeta function

Search Result 11, Processing Time 0.024 seconds

THE CATALAN'S CONSTANT AND SERIES INVOLVING THE ZETA FUNCTION

  • Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.435-443
    • /
    • 1998
  • Some mathematical constants have been used in evaluating series involving the Zeta function, the origin of which can be traced back to an over two centries old theorem of Christian Goldbach. We show some of the series involving the Zeta function can be evaluated in terms of the Catalan's constant by using the theory of the double Gamma function.

  • PDF

A CLASS OF SERIES INVOLVING THE ZETA FUNCTION

  • Lee, Hye-Rim;Cho, Young-Joon;Lee, Keum-Sik;Seo, Tae-Young
    • East Asian mathematical journal
    • /
    • v.16 no.2
    • /
    • pp.303-315
    • /
    • 2000
  • The authors apply the theory of multiple Gamma functions, which was recently revived in the study of the determinants of the Laplacians, in order to present a class of closed-form evaluations of series involving the Zeta function by appealing only to the definitions of the double and triple Gamma functions.

  • PDF

SEVERAL RESULTS ASSOCIATED WITH THE RIEMANN ZETA FUNCTION

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.467-480
    • /
    • 2009
  • In 1859, Bernhard Riemann, in his epoch-making memoir, extended the Euler zeta function $\zeta$(s) (s > 1; $s{\in}\mathbb{R}$) to the Riemann zeta function $\zeta$(s) ($\Re$(s) > 1; $s{\in}\mathbb{C}$) to investigate the pattern of the primes. Sine the time of Euler and then Riemann, the Riemann zeta function $\zeta$(s) has involved and appeared in a variety of mathematical research subjects as well as the function itself has been being broadly and deeply researched. Among those things, we choose to make a further investigation of the following subjects: Evaluation of $\zeta$(2k) ($k {\in}\mathbb{N}$); Approximate functional equations for $\zeta$(s); Series involving the Riemann zeta function.

  • PDF

NOTES ON SOME IDENTITIES INVOLVING THE RIEMANN ZETA FUNCTION

  • Lee, Hye-Rim;Ok, Bo-Myoung;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.165-173
    • /
    • 2002
  • We first review Ramaswami's find Apostol's identities involving the Zeta function in a rather detailed manner. We then present corrected, or generalized formulas, or a different method of proof for some of them. We also give closed-form evaluation of some series involving the Riemann Zeta function by an integral representation of ζ(s) and Apostol's identities given here.

DETERMINANTS OF THE LAPLACIANS ON THE n-DIMENSIONAL UNIT SPHERE Sn (n = 8, 9)

  • Choi, June-Sang
    • Honam Mathematical Journal
    • /
    • v.33 no.3
    • /
    • pp.321-333
    • /
    • 2011
  • During the last three decades, the problem of evaluation of the determinants of the Laplacians on Riemann manifolds has received considerable attention by many authors. The functional determinant for the n-dimensional sphere $S^n$ with the standard metric has been computed in several ways. Here we aim at computing the determinants of the Laplacians on $S^n$ (n = 8, 9) by mainly using ceratin known closed-form evaluations of series involving Zeta function.

SOME RESULTS ON PARAMETRIC EULER SUMS

  • Xu, Ce
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1255-1280
    • /
    • 2017
  • In this paper we present a new family of identities for parametric Euler sums which generalize a result of David Borwein et al. [2]. We then apply it to obtain a family of identities relating quadratic and cubic sums to linear sums and zeta values. Furthermore, we also evaluate several other series involving harmonic numbers and alternating harmonic numbers, and give explicit formulas.

SPECIAL VALUES AND INTEGRAL REPRESENTATIONS FOR THE HURWITZ-TYPE EULER ZETA FUNCTIONS

  • Hu, Su;Kim, Daeyeoul;Kim, Min-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.185-210
    • /
    • 2018
  • The Hurwitz-type Euler zeta function is defined as a deformation of the Hurwitz zeta function: $${\zeta}_E(s,x)={\sum_{n=0}^{\infty}}{\frac{(-1)^n}{(n+x)^s}}$$. In this paper, by using the method of Fourier expansions, we shall evaluate several integrals with integrands involving Hurwitz-type Euler zeta functions ${\zeta}_E(s,x)$. Furthermore, the relations between the values of a class of the Hurwitz-type (or Lerch-type) Euler zeta functions at rational arguments have also been given.

NOTES ON FORMAL MANIPULATIONS OF DOUBLE SERIES

  • Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.781-789
    • /
    • 2003
  • Formal manipulations of double series are useful in getting some other identities from given ones and evaluating certain summations, involving double series. The main object of this note is to summarize rather useful double series manipulations scattered in the literature and give their generalized formulas, for convenience and easier reference in their future use. An application of such manipulations to an evaluation for Euler sums (in itself, interesting), among other things, will also be presented to show usefulness of such manipulative techniques.

A reducible case of double hypergeometric series involving the riemann $zeta$-function

  • Park, Junesang;H. M. Srivastava
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.107-110
    • /
    • 1996
  • Usng the Pochhammer symbol $(\lambda)_n$ given by $$ (1.1) (\lambda)_n = {1, if n = 0 {\lambda(\lambda + 1) \cdots (\lambda + n - 1), if n \in N = {1, 2, 3, \ldots}, $$ we define a general double hypergeometric series by [3, pp.27] $$ (1.2) F_{q:s;\upsilon}^{p:r;u} [\alpha_1, \ldots, \alpha_p : \gamma_1, \ldots, \gamma_r; \lambda_1, \ldots, \lambda_u;_{x,y}][\beta_1, \ldots, \beta_q : \delta_1, \ldots, \delta_s; \mu_1, \ldots, \mu_v; ] = \sum_{l,m = 0}^{\infty} \frac {\prod_{j=1}^{q} (\beta_j)_{l+m} \prod_{j=1}^{s} (\delta_j)_l \prod_{j=1}^{v} (\mu_j)_m)}{\prod_{j=1}^{p} (\alpha_j)_{l+m} \prod_{j=1}^{r} (\gamma_j)_l \prod_{j=1}^{u} (\lambda_j)_m} \frac{l!}{x^l} \frac{m!}{y^m} $$ provided that the double series converges.

  • PDF