• Title/Summary/Keyword: sieve bootstrap

Search Result 5, Processing Time 0.019 seconds

Bootstrap methods for long-memory processes: a review

  • Kim, Young Min;Kim, Yongku
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • This manuscript summarized advances in bootstrap methods for long-range dependent time series data. The stationary linear long-memory process is briefly described, which is a target process for bootstrap methodologies on time-domain and frequency-domain in this review. We illustrate time-domain bootstrap under long-range dependence, moving or non-overlapping block bootstraps, and the autoregressive-sieve bootstrap. In particular, block bootstrap methodologies need an adjustment factor for the distribution estimation of the sample mean in contrast to applications to weak dependent time processes. However, the autoregressive-sieve bootstrap does not need any other modification for application to long-memory. The frequency domain bootstrap for Whittle estimation is provided using parametric spectral density estimates because there is no current nonparametric spectral density estimation method using a kernel function for the linear long-range dependent time process.

Forecasting interval for the INAR(p) process using sieve bootstrap

  • Kim, Hee-Young;Park, You-Sung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.11a
    • /
    • pp.159-165
    • /
    • 2005
  • Recently, as a result of the growing interest in modelling stationary processes with discrete marginal distributions, several models for integer valued time series have been proposed in the literature. One of theses models is the integer-valued autoregressive(INAR) models. However, when modelling with integer-valued autoregressive processes, there is not yet distributional properties of forecasts, since INAR process contain an accrued level of complexity in using the Steutal and Van Harn(1979) thinning operator 'o'. In this study, a manageable expression for the asymptotic mean square error of predicting more than one-step ahead from an estimated poisson INAR(1) model is derived. And, we present a bootstrap methods developed for the calculation of forecast interval limits of INAR(p) model. Extensive finite sample Monte Carlo experiments are carried out to compare the performance of the several bootstrap procedures.

  • PDF

Nonparametric test for cointegration rank using Cholesky factor bootstrap

  • Lee, Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.587-592
    • /
    • 2016
  • It is a long-standing issue to correctly determine the number of long-run relationships among time series processes. We revisit nonparametric test for cointegration rank and propose bootstrap refinements. Consistent with model-free nature of the tests, we make use of Cholesky factor bootstrap methods, which require weak conditions for data generating processes. Simulation studies show that the original Breitung's test have difficulty in obtaining the correct size due to dependence in cointegrated errors. Our proposed bootstrapped tests considerably mitigate size distortions and represent a complementary approach to other bootstrap refinements, including sieve methods.

Size Refinement of Empirical Likelihood Tests in Time Series Models using Sieve Bootstraps

  • Lee, Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.3
    • /
    • pp.199-205
    • /
    • 2013
  • We employ sieve bootstraps for empirical likelihood tests in time series models because their null distributions are often vulnerable to the presence of serial dependence. We found a significant size refinement of the bootstrapped versions of a Lagrangian Multiplier type test statistic regardless of the bandwidth choice required by long-run variance estimations.

Bootstrap Confidence Intervals for the INAR(p) Process

  • Kim, Hee-Young;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.343-358
    • /
    • 2006
  • The distributional properties of forecasts in an integer-valued time series model have not been discovered yet mainly because of the complexity arising from the binomial thinning operator. We propose two bootstrap methods to obtain nonparametric prediction intervals for an integer-valued autoregressive model : one accommodates the variation of estimating parameters and the other does not. Contrary to the results of the continuous ARMA model, we show that the latter is better than the former in forecasting the future values of the integer-valued autoregressive model.