• Title/Summary/Keyword: signal cascade

Search Result 125, Processing Time 0.034 seconds

Inverse Filtering for a Modelling Channel Filter (모델화 채널필터에 대한 인버스필터링)

  • 김성호;주창복
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.17-20
    • /
    • 2000
  • In a digital communication system, the transmission channel may introduce error into the digital signal being transmitted. It would be useful if a process could be devised so that the error could be removed in order to recover the transmitted digital signal. We design a corrective filter that is inverse filter, which will generate an output signal identical to the input signal. in order for two systems connected in cascade to produce an output which is identical to the input signal, the over-all unit sample response of the cascade connection must be a unit sample function.

  • PDF

Performance Evaluation of Cascade AOA Estimator Based on Uniform Circular Array

  • Kim, Tae-yun;Hwang, Suk-seung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.65-70
    • /
    • 2020
  • For a wireless communication system, the angle-of-arrival (AOA) of the signal has a variety of applications. The signal AOA is estimated utilizing various antenna array structure such as Uniform Linear Array (ULA), Uniform Rectangular Array (URA), and Uniform Circular Array (UCA). In this paper, we introduce a cascade AOA estimation algorithm based on the UCA, which is consisted of CAPON and Beamspace MUSIC. CAPON is employed to estimate approximate AOA groups including multiple AOA signals and Beamspace MUSIC is employed to estimate detailed signal AOAs in the estimated AOA groups. In addition, we provide the computer simulation results for verifying and analyzing the performance of the cascade AOA estimator based on UCA.

Design of a Cascade Adaptive Filter for the Removal of Baseline Drift (기저선 변동 제거를 위한 종속 적응필터의 설계)

  • Park, Kwang-Li;Lee, Se-Jin;Lee, Kyoung-Joung;Yoon, Hyung-Ro
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.101-104
    • /
    • 1995
  • In this paper, we designed a cascade adaptive filter for elimination of the baseline drift and the distortion of the filtered signal. The cascade adaptive filter(CAF) consists of two filters. The first adaptive filter which has the cutoff frequency of 0.3Hz eliminate the noisy signal. The second adaptive filter remove the remnant baseline drift which is not eliminated by the first adaptive filter. Comparing the performance of the CAF with standard filter, recursive notch filter(RNF) and a adaptive impulse correlated filter(AICF), the CAF showed a higher performance in removal of the baseline drift than standard filler, and RNF. Also, considering the distortion of filtered signal, CAF is better than AICF and is comparable to the standard filter.

  • PDF

Cascade 3-Phase IHCML Inverter using maximal distension vector control (최근접 벡터 제어기법을 이용한 Cascade 3상 IHCML 인버터)

  • Song, Sung-Geun;Park, Sung-Jun;Nam, Hae-Kon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.187-189
    • /
    • 2007
  • In this paper, the cascade 3-phase IHMCL inverter using two low frequency transformers is proposed. The proposed inverter is constructed by connecting a 3-phase IHCML inverter. the cascade 3-phase IHCML inverter has several advantages. One advantage is that only one input power source is required because of using transformers to isolate. Another advantage is that the switching frequency of the high power switches is almost fundamental frequency of reference and the other the switching frequency of the low power switches is higher. It can be known that cascade 3 phase IHCML inverter has the excellent efficiency and the outstanding electric quality. lastly, we tested the 5kW cascade 3-phase IHCML inverter to clarify the proposed electric circuit and reasonableness of control signal for the proposed inverter.

  • PDF

Incoherent Frequency 12-tupling Microwave Signal Generation Scheme Based on Cascade Modulators

  • Teng, Yichao;Zhang, Pin;Xu, Xin;Zhang, Baofu
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.466-476
    • /
    • 2021
  • Frequency-multiplication technology based on microwave photonic principles can be used to generate microwave and millimeter wave signals with a wide frequency tuning range. However, the existing cascaded external modulation frequency-tupling scheme needs to ensure the phase coherence of the modulated Radio Frequency (RF) signal, while the phase modulation directly limits the frequency tuning range of the external modulation frequency multiplication. In this paper, a novel approach for generating an incoherent frequency 12-tupling signal with cascade modulation is proposed. The structure of cascaded dual-parallel Mach-Zehnder modulators can generate a frequency 12-tupling signal. The proposed structure uses no filter or phase control of the RF driving signal. Microwave photonic frequency-tupling was realized under incoherent conditions. Software simulations and experiments validated the proposed structure and proved that it can generate frequency 12-tupling microwave signals under incoherent conditions. Both the frequency range and reliability of the frequency-tupling system has been improved by the proposed structure.

Computational Complexity Analysis of Cascade AOA Estimation Algorithm Based on FMCCA Antenna

  • Kim, Tae-yun;Hwang, Suk-seung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.91-98
    • /
    • 2022
  • In the next generation wireless communication system, the beamforming technique based on a massive antenna is one of core technologies for transmitting and receiving huge amounts of data, efficiently and accurately. For highly performed and highly reliable beamforming, it is required to accurately estimate the Angle of Arrival (AOA) for the desired signal incident to an antenna. Employing the massive antenna with a large number of elements, although the accuracy of the AOA estimation is enhanced, its computational complexity is dramatically increased so much that real-time communication is difficult. In order to improve this problem, AOA estimation algorithms based on the massive antenna with the low computational complexity have been actively studied. In this paper, we compute and analyze the computational complexity of the cascade AOA estimation algorithm based on the Flexible Massive Concentric Circular Array (FMCCA). In addition, its computational complexity is compared to conventional AOA estimation techniques such as the Multiple Signal Classification (MUSIC) algorithm with the high resolution and the Only Beamspace MUSIC (OBM) algorithm.

Design of a Cascade Adaptive Filter for the Performance sn Detection of Segment (ST세그먼트 검출성능향상을 종속 적응필터의 세계)

  • 박광리;이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.517-524
    • /
    • 1995
  • This paper is a study on the design of the cascade adaptive filter (CAF) for baseline wandering elimination in order to enhance the performance of the detection of ST segments in ECG. The CAF using Least Mean Square (LMS) algorithm consists of two filters. The primary adaptive filter which has the cutoff frequency of 0.3Hz eliminates the baseline wandering in raw ECG The secondary adaptive filter removes the remnant baseline wandering which is not eliminated by the primary adaptive filter. The performance of the CAF was compared with the standard filter, the recursive filter, and the adaptive impulse correlated filter (AICF). As a result, the CAF showed a lower signal distortion than the standard filter and the AICF. Also, the CAF showed a better perf'ormance in noise elimination than the standard filter and the recursive filter. In conclusion, considering the characteristics of the noise elimination and the signal distortion, the CAF shows a better performance in the removal of the baseline wandering than the other three Otters and suggests the high performance in the detection of ST segment.

  • PDF

Chemistry and Biology of Ras Farnesyltransferase

  • Cho, Kwang-Nym;Lee, Kee-In
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.759-769
    • /
    • 2002
  • Mutated forms of ras are found in many human tumors and the rate of incidence is significantly higher in colon and pancreatic cancers. The protein product from the ras oncogene is a small G-protein, $p21^{ras}{\;}(Ras)$ that is known to playa key role in the signal transduction cascade and cell differentiation and proliferation. Mutated Ras is unable to regulate itself and remains constantly activated, leading to uncontrolled cell growth. The function of Ras in signal transduction requires its location near the growth factor receptor at the cell membrane. However, Ras does not have a transmembrane domain. Ras requires farnesylation to increase its hydrophobicity and subsequent plasma membrane association for its transforming activity. This key post-translational modification is catalyzed by the enzyme Ras farnesyltransferase (FTase), which transfers a farnesyl group from farnesylpyrophosphate to the C-terminal cysteine of the Ras protein. The requirement has focused attention on FTase as a target for therapeutic intervention. Selective inhibition of FTase will prevent Ras protein from association with the plasma membrane, leading to a disruption of oncogenic Ras function.

Angle-of-Arrival Estimation Algorithm Based on Combined Array Antenna

  • Kim, Tae-yun;Hwang, Suk-seung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.131-137
    • /
    • 2021
  • The Angle-of-Arrival (AOA) estimation in real time is one of core technologies for the real-time tracking system, such as a radar or a satellite. Although AOA estimation algorithms for various antenna types have been studied, most of them are for the single-shaped array antenna suitable to the specific frequency. In this paper, we propose the cascade AOA estimation algorithm for the combined array antenna with Uniform Rectangular Frame Array (URFA) and Uniform Circular Array (UCA), with the excellent performance for various frequencies. The proposed technique is consisted of Capon for roughly finding AOA groups with multiple signal AOAs and Beamspace Multiple Signal Classification (MUSIC) for estimating the detailed signal AOA in the AOA group, for the combined array antenna. In addition, we provide computer simulation results for verifying the estimation performance of the proposed algorithm.

Cascade AOA Estimation Algorithm Based on FMCCA Antenna (FMCCA 안테나 기반 캐스케이드 도래각 추정 알고리즘)

  • Kim, Tae-Yun;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1081-1088
    • /
    • 2021
  • The modern wireless communication system employes the beamforming technique based on a massive array antenna with a number of elements, for supporting the smooth communication services. A reliable beamforming technology requires the Angle-of-Arrival(: AOA) information for the signal incident to the receiving antenna, which is generally estimated by the high-resolution AOA estimation algorithm such as Multiple Signal Classification(: MUSIC). Although the MUSIC algorithm has the excellent estimation performance, it is difficult to estimate AOA in real time for the massive array antenna due to the extremely high computational complexity. In order to enhance this problem, in this paper, we propose the cascade AOA estimation algorithm based on a Flexible Massive Concentric Circular Array(: FMCCA) antenna with the On/Off function for antenna elements. The proposed cascade algorithm consists of the CAPON algorithm using some elements among entire antenna elements and the Beamspace MUSIC algorithm using entire elements. We provide computer simulation results for various scenarios to demonstrate the AOA estimation performance of the proposed approach.