• Title/Summary/Keyword: signaling cascades

Search Result 130, Processing Time 0.03 seconds

Mechanisms of Type-I Interferon Signal Transduction

  • Uddin, Shahab;Platanias, Leonidas C.
    • BMB Reports
    • /
    • v.37 no.6
    • /
    • pp.635-641
    • /
    • 2004
  • Interferons regulate a number of biological functions including control of cell proliferation, generation of antiviral activities and immumodulation in human cells. Studies by several investigators have identified a number of cellular signaling cascades that are activated during engagement of interferon receptors. The activation of multiple signaling cascades by the interferon receptors appears to be critical for the generation of interferon mediated biological functions and immune surveillance. The present review summarizes the existing knowledge on the multiple signaling cascades activated by Type I interferons. Recent developments in this research area are emphasized and the implications of these new discoveries on our understanding of interferon actions are discussed.

Functions of MAPK Cascade Pathways in Plant Defense Signaling

  • Cheong, Yong-Hwa;Kim, Min-Chul
    • The Plant Pathology Journal
    • /
    • v.26 no.2
    • /
    • pp.101-109
    • /
    • 2010
  • Protein phosphorylation is one of the major mechanisms for controlling many cellular processes in all living organisms. Mitogen-activated protein kinase (MAPK) cascades are known to transducer extracellular stimuli to several cellular processes, including cell division, differentiation as well as responses to various stresses. In plants, several studies have revealed that MAPK cascade pathways play an important role in responses against biotic and abiotic stresses, including wounding, pathogen infection, temperature, drought, salinity and plant hormones. It is also known that MAPK cascades-mediated signaling is an essential process in the resistance step to pathogens by regulating the activity of transcription factors. Here, the insights into the functions of MAPK cascade pathways in plant defense response signaling from Arabidopsis, tobacco and rice are described.

Insect GPCRs and TRP Channels: Putative Targets for Insect Repellents

  • Kim, Sang Hoon
    • Interdisciplinary Bio Central
    • /
    • v.5 no.3
    • /
    • pp.6.1-6.7
    • /
    • 2013
  • Many insects such as mosquitoes cause life-threatening diseases such as malaria, yellow fever and West Nile virus. Malaria alone infects 500 million people annually and causes 1-3 million death per year. Volatile insect repellents, which are detected through the sense of smell, have long been used to protect humans against insect pests. Antifeed-ants are non-volatile aversive compounds that are detected through the sense of taste and prevent insects from feeding on plants. The molecular targets and signaling path-ways required for sensing insect repellents and antifeedants are poorly understood. Transient Receptor Potential (TRP) Ca2+-permeable cation channels exist in organisms ranging from C. elegans to D. melanogaster and Homo sapiens. Drosophila has 13 family members, which mainly function in sensory physiology such as vision, thermotaxis and chemotaxis. G protein-coupled receptors (GPCRs) initiate olfactory signaling cascades in mammals and in nematodes C.elegans. However, the mechanisms of G protein signaling cascades in insect chemosensation are controversial. In this review, I will discuss the putative roles of G protein-coupled receptors (GPCRs) and Transient Receptor Potential (TRP) channels as targets for insect repellents.

Cell Signaling Cascades as Prime Targets for Chemoprevention with Dietary Phytochemicals

  • Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.92-93
    • /
    • 2003
  • Chemoprevention refers to the use of agents to inhibit, reverse, or retard tumorigenesis. Numerous phytochemicals present in edible plants have been reported to interfere with a specific stage of the carcinogenic process. Some antioxidative and anti-inflammatory substances derived from dietary or medicinal plants exert chemopreventive properties by targeting intracellular signaling molecules or events.(omitted)

  • PDF

The CsSTE50 Adaptor Protein in Mitogen-Activated Protein Kinase Cascades Is Essential for Pepper Anthracnose Disease of Colletotrichum scovillei

  • Jong-Hwan, Shin;Byung-Seong, Park;Kyoung Su, Kim
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.593-602
    • /
    • 2022
  • Anthracnose, caused by the ascomycete fungus Colletotrichum scovillei, is a destructive disease in pepper. The fungus germinates and develops an infection structure called an appressorium on the plant surface. Several signaling cascades, including cAMP-mediated signaling and mitogen-activated protein kinase (MAPK) cascades, are involved in fungal development and pathogenicity in plant pathogenic fungi, but this has not been well studied in the fruit-infecting fungus C. scovillei. Ste50 is an adaptor protein interacting with multiple upstream components to activate the MAPK cascades. Here, we characterized the CsSTE50 gene of C. scovillei, a homolog of Magnaporthe oryzae MST50 that functions in MAPK cascades, by gene knockout. The knockout mutant ΔCsste50 had pleiotropic phenotypes in development and pathogenicity. Compared with the wild-type, the mutants grew faster and produced more conidia on regular agar but were more sensitive to osmotic stress. On artificial and plant surfaces, the conidia of the mutant showed significantly reduced germination and failed to form appressoria. The mutant was completely non-pathogenic on pepper fruits with or without wounds, indicating that pre-penetration and invasive growth were both defective in the mutant. Our results show that the adaptor protein CsSTE50 plays a role in vegetative growth, conidiation, germination, appressorium formation, and pathogenicity in C. scovillei.

MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula

  • Ryu, Hojin;Laffont, Carole;Frugier, Florian;Hwang, Ildoo
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • Mitogen-activated protein kinase (MAPK) signaling cascades play critical roles in various cellular events in plants, including stress responses, innate immunity, hormone signaling, and cell specificity. MAPK-mediated stress signaling is also known to negatively regulate nitrogen-fixing symbiotic interactions, but the molecular mechanism of the MAPK signaling cascades underlying the symbiotic nodule development remains largely unknown. We show that the MtMKK5-MtMPK3/6 signaling module negatively regulates the early symbiotic nodule formation, probably upstream of ERN1 (ERF Required for Nodulation 1) and NSP1 (Nod factor Signaling Pathway 1) in Medicago truncatula. The overexpression of MtMKK5 stimulated stress and defense signaling pathways but also reduced nodule formation in M. truncatula roots. Conversely, a MAPK specific inhibitor, U0126, enhanced nodule formation and the expression of an early nodulation marker gene, MtNIN. We found that MtMKK5 directly activates MtMPK3/6 by phosphorylating the TEY motif within the activation loop and that the MtMPK3/6 proteins physically interact with the early nodulation-related transcription factors ERN1 and NSP1. These data suggest that the stress signaling-mediated MtMKK5/MtMPK3/6 module suppresses symbiotic nodule development via the action of early nodulation transcription factors.

Host Innate Immunity against Hepatitis E Virus and Viral Evasion Mechanisms

  • Kang, Sangmin;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1727-1735
    • /
    • 2017
  • Hepatitis E virus (HEV) infections cause epidemic or sporadic acute hepatitis, which are mostly self-limiting. However, viral infection in immunocompromised patients and pregnant women may result in serious consequences, such as chronic hepatitis and liver damage, mortality of the latter of which reaches up to 20-30%. Type I interferon (IFN)-induced antiviral immunity is known to be the first-line defense against virus infection. Upon HEV infection in the cell, the virus genome is recognized by pathogen recognition receptors, leading to rapid activation of intracellular signaling cascades. Expression of type I IFN triggers induction of a barrage of IFN-stimulated genes, helping the cells cope with viral infection. Interestingly, some of the HEV-encoded genes seem to be involved in disrupting signaling cascades for antiviral immune responses, and thus crippling cytokine/chemokine production. Antagonistic mechanisms of type I IFN responses by HEV have only recently begun to emerge, and in this review, we summarize known HEV evasion strategies and compare them with those of other hepatitis viruses.

Taste Transduction (맛의 신호전달)

  • 임호수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.645-653
    • /
    • 2003
  • Taste receptor cells respond to gustatory stimuli using a complex arrangement of receptor molecules, signaling cascades and ion channels. When stimulated, these cells produce action potentials that result in the release of neurotransmitter onto an afferent nerve fiber that in turn relays the identity and intensity of the gustatory stimuli to tie brain. A variety of mechanisms are used in transducing the four primary tastes. Direct interaction of the stimuli with ion channels appears to be of particular importance in transducing stimuli reported as salty or sour, whereas tile second messenger systems cyclic AMP and inositol trisphosphate are important in transducing bitter and sweet stimuli. In addition to the four basic tastes, specific mechanisms exist for the amino acid glutamate, which is sometimes termed the fifth primary taste. The emerging picture is that not only do individual taste qualities use more than one mechanism, but multiple pathways are available for individual tastants as well.