• Title/Summary/Keyword: silica particles

Search Result 533, Processing Time 0.033 seconds

Porous Silica Particles As Chromatographic Separation Media: A Review

  • Cheong, Won Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3465-3474
    • /
    • 2014
  • Porous silica particles are the most prevailing raw material for stationary phases of liquid chromatography. During a long period of time, various methodologies for production of porous silica particles have been proposed, such as crashing and sieving of xerogel, traditional dry or wet process preparation of conventional spherical particles, preparation of hierarchical mesoporous particles by template-mediated pore formation, repeated formation of a thin layer of porous silica upon nonporous silica core (core-shell particles), and formation of specific silica monolith followed by grinding and calcination. Recent developments and applications of useful porous silica particles will be covered in this review. Discussion on sub-$3{\mu}m$ silica particles including nonporous silica particles, carbon or metal oxide clad silica particles, and molecularly imprinted silica particles, will also be included. Next, the individual preparation methods and their feasibilities will be collectively and critically compared and evaluated, being followed by conclusive remarks and future perspectives.

Adsorption of Colloidal Silica Particles on a Glass Substrate

  • Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1011-1016
    • /
    • 2002
  • Colloidal particles of silica (100 nm in size) were electrostatically dispersed and adsorbed on a glass substrate coated with silica sol or alumina sol. Stability of the suspensions and microstructure of the adsorbed particle layers were discussed in terms of total potential energies between the particles and the substrate. Well-dispersed suspension resulted in a layer with densely packed and regularly arranged particles, whereas less stable suspension resulted in a porous layer with loosely packed and irregularly arranged particles. Despite repulsive interactions between the particles and the substrate coated with silica sol, the observed adsorption can be attributed to chemical bonds formed at the interface between the particle and silica sol. In contrast, the adsorption of the particles on the substrate coated with alumina sol formed a layer with strongly adhered and densely packed particles, due to large attractive interactions between the particles and alumina sol.

High-Transmittance Films Coated from Silica Colloidal Nano-Particles (II) (실리카 콜로이드 나노입자를 이용한 반사 방지막의 제조 (II))

  • Hwang, Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.399-404
    • /
    • 2005
  • Anti-reflection film was coated by using spherical silica nano colloidal particles and fumed silica particles. Silica colloid sol was reserved between two inclined slide glasses by capillary force, and particles were stacked to form a film onto the substrate as the upper glass was sliding. The deposition processes were studied to enhance the wavelength dependency of the light transmittance and to control the effective refractive index of the film. Both of the spherical and fumed silica particles showed an enhancement of $4.0-4.4\%$ in light transmittance by one step coating. The dependence of the transmittance on wavelength was largely improved at the longer wavelength by partial coating of fumed particles on the film of spherical particles. The effective refractive index of the film was controlled by removing latex particles that were co-deposited with silica particles. Using this process the light reflectance from one side of the glass substrate could be reduced from $4.2\%$ to $0.6\%$ although zero reflectance was not achieved due to the agglomeration of the latex particles.

Growth Characteristics of Silica Particles Using In situ Sampling from $H_2/O_2TEOS$ Diffusion Flame (수소/산소/TEOS 확산화염 중 직접포집을 이용한 실리카 입자의 성장특성에 관한 연구)

  • Jung, Chang-Hoon;Ahn, Kang-Ho;Choi, Man-Soo;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.404-409
    • /
    • 2000
  • Growth characteristics of silica particles have been studied experimentally using in situ sampling technique from $H_2/O_2TEOS$ diffusion flame with carefully devised sampling probe. Verification of sampling result was done through new method and effects of flame condition and TEOS flow rate on growth characteristics of silica particles were investigated. By comparing particles sampled by thermophoretic sampling in flame with those by collector sampling after probe, particles do not change before and after probe sampling, which was clearly proved from the fact that the result of TEM image analysis makes good agreement with that of SMPS measurement. As flame temperature increases, the effect of coalescence or sintering becomes important mechanism during growth of silica particles, resulting in canceling the effect of coagulation, which makes mean diameter of silica particles increase slowly. With increase in TEOS flow rate, the number concentration of generated silica particle increases but residence time of particles in flame decreases. As a result, there exists upper limit to which the diameter of silica particle increases under same flame condition.

  • PDF

Growth and Characteristics of Monodispersed Spherical Silica Particles by Sol-Gel Method (졸-겔 법에 의한 단분산 구형 실리카 입자의 성장과 특성에 관한 연구)

  • 윤호성;박형상
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.13-19
    • /
    • 1997
  • From the formation of the monodispersed silica particle which is a valuable for the industry by Sol-Gel process, the effects of the parameters participated in the process, the growth mechanism and the characteristics of silica particles for each rection conditions are investigated. To investigate about the formation of final silica particles, the suspension which performs the polymerization is reacted with molybdic acid, and the evolutions of TEOS and silica particle size are investigated in the reaction time ? 새 the characteristics of molybdic acid with the suspension. From the results, a constant number of silica particle is formed at early reaction stage. Silica particles grow through the aggregation of smaller particles and nucleation is rate-limiting step for the growth of particles. In the conditions of this study, spherical silica particles are formed, [NH$_3$] and [$H_2O$] concentration increase the particle size but particle size decrease with [$H_2O$] concentration which is a certain above region. Average particle sizes are 187.4~483.3 nm and standard deviations in the average particle size are 1.7~2.9% with each experimental condition. From the BET results, specific surface area is 5.5~23.4 $m^2$/g and these values decrease with increase size. The average pore size is 50~70$\AA$.

  • PDF

Preparation and Characterization of Spherical Silica-coated Ceria Nanoparticles by Sol-Gel Method

  • Ahn, Yang-Kyu;Jeoung, Hae-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.96-96
    • /
    • 2010
  • Monodispersed spherical silica-coated ceria nanoparticles were prepared through a sol-gel process using tetraethylorthosilicate (TEOS) and ceria fine particles. In this process, ceria fine particles were also prepared from cerium nitrate. The mean size of ceria particles was 300nm. Silica nanoparticles with narrow particle size distribution were prepared by controlled hydrolysis of TEOS solution. The silica sols were obtained by peptization, the process of redispersing a coagulated colloid, and were coated on ceria particles by the control of the weight ratio of silica/ceria and the pH of the mixture in aqueous solution. The morphologies of particles were characterized with scaning electron microscopy(SEM), transmission electron microscopy(TEM) and atomic force microscopy(AFM). The coating thickness of silica particles obtained by using this method was controlled in the range of 30 - 70nm.

  • PDF

Preparation of Silica-Gold Composite particles (실리카-골드 복합체의 합성 연구)

  • Kim, Dae-Wook;Shim, Seung-Bo;Chun, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5365-5369
    • /
    • 2011
  • Silica-gold composite particles were prepared by wet chemical route including impregnation method. The effect of precursor and solvent on the preparation of silica-gold particles was investigated. When spherical silica particles and PVP and hydrogentetrachloroaurate(III) hydrate aqueous solution were used as support material and precursor solution, silica-gold composite particles with light pink color successfully obtained. Obtained composite particles were characterized using FE-SEM, FE-TEM and XRD.

BAM:Mn Phosphor Prepared from Spray Solution with Colloidal Silica (실리카 함유 콜로이달 분무용액으로부터 합성된 BAM:Mn 형광체)

  • Ju, Seo-Hee;Koo, Hye-Young;Hong, Seung-Kwon;Kim, Do-Youp;Kang, Yun-Chan
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.123-128
    • /
    • 2006
  • [ $BaMgAl_{10}O_{19}:Mn^{2+}$ ](BAM:Mn) phosphor particles with spherical shape were prepared by spray pyrolysis from colloidal solution with silica. The phosphor particles prepared by spray pyrolysis from aqueous solution had irregular morphology after high temperature post-treatment. On the other hand, the phosphor particles prepared from spray solution with colloidal silica had spherical shape after post-treatment. Colloidal silica used as additive improved the spherical shape and filled morphology of the precursor particles prepared by spray pyrolysis. The precursor particles with filled structure produced the BAM:Mn phosphor particles with spherical shape and non-aggregation characteristics after post-treatment at $1400^{\circ}C$ under reducing atmosphere. The phosphor particles prepared from colloidal solutions formed the crystal structure of BAM:Mn phosphor irrespective of the silica contents. The BAM:Mn phosphor particles prepared from aqueous and colloidal solutions had similar photoluminescence intensities under vacuum ultraviolet.

Removal of Anionic Dyes and Heavy Metal Ions Using Silica Nanospheres or Porous Silica Micro-particles Modified with Various Coupling Agents (다양한 커플링제로 표면 개질된 실리카들을 활용한 음이온성 염료 및 중금속의 제거)

  • Sung, Sohyeon;Lee, Minjun;Cho, Young-Sang
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.596-610
    • /
    • 2021
  • For application in adsorption process, we synthesized silica nanospheres by Stober method, and silica particles with wrinkled surface as well as macroporous silica particles were also fabricated by utilizing emulsion droplet as micro-reactors, followed by modification of the particle surface using suitable coupling agents containing amine groups. These particles exhibited improved adsorption capacity for heavy metal ions and anionic dyes, which were difficult to be removed by conventional silica particles without surface modification. Anionic dye, methyl orange could be removed almost completely by adsorption using porous silica particles modified using APTES. The adsorption efficiency of heavy metal like copper ions was close to 100%, when porous silica was used as adsorbent particles modified with AAPTS.

Production of Acetylene Black/silica Composite Particles by Adsorption of Polyethylenimine (Polyethyleneimine 흡착에 의한 아세틸렌 블랙/실리카 복합체 입자 제조)

  • Lee, Jeong-Woo;Park, Jung-Hwan;Shim, Sang-Eun
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • The acetylene black/silica composite particles were prepared by a simple and fast method using polyethylenimine (PEI) as a coupling agent. The composite particles were produced via the following two steps; adsorption of PEI on the surface of acetylene black particles and synthesis of silica by sol-gel process. The morphology of the composite particles was a core-shell, and a large number of micropores was created after silica was synthesized on the acetylene black surface.