• Title/Summary/Keyword: silicon etching

Search Result 735, Processing Time 0.222 seconds

Design of Single-wafer Wet Etching Bath for Silicon Wafer Etching (실리콘 웨이퍼 습식 식각장치 설계 및 공정개발)

  • Kim, Jae Hwan;Lee, Yongil;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.77-81
    • /
    • 2020
  • Silicon wafer etching in micro electro mechanical systems (MEMS) fabrication is challenging to form 3-D structures. Well known Si-wet etch of silicon employs potassium hydroxide (KOH), tetramethylammonium hydroxide (TMAH) and sodium hydroxide (NaOH). However, the existing silicon wet etching process has a fatal disadvantage that etching of the back side of the wafer is hard to avoid. In this study, a wet etching bath for 150 mm wafers was designed to prevent back-side etching of silicon wafer, and we demonstrated the optimized process recipe to have anisotropic wet etching of silicon wafer without any damage on the backside. We also presented the design of wet bath for 300 mm wafer processing as a promising process development.

Silicon Etching Process of NF3 Plasma with Residual Gas Analyzer and Optical Emission Spectroscopy in Intermediate Pressure (잔류가스분석기 및 발광 분광 분석법을 통한 중간압력의 NF3 플라즈마 실리콘 식각 공정)

  • Kwon, Hee Tae;Kim, Woo Jae;Shin, Gi Won;Lee, Hwan Hee;Lee, Tae Hyun;Kwon, Gi-Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.97-100
    • /
    • 2018
  • $NF_3$ Plasma etching of silicon was conducted by injecting only $NF_3$ gas into reactive ion etching. $NF_3$ Plasma etching was done in intermediate pressure. Silicon etching by $NF_3$ plasma in reactive ion etching was diagnosed through residual gas analyzer and optical emission spectroscopy. In plasma etching, optical emission spectroscopy is generally used to know what kinds of species in plasma. Also, residual gas analyzer is mainly to know the byproducts of etching process. Through experiments, the results of optical emission spectroscopy during silicon etching by $NF_3$ plasma was analyzed with connecting the results of etch rate of silicon and residual gas analyzer. It was confirmed that $NF_3$ plasma etching of silicon in reactive ion etching accords with the characteristic of reactive ion etching.

The Development of Deep Silicon Etch Process with Conventional Inductively Coupled Plasma (ICP) Etcher (범용성 유도결합 플라즈마 식각장비를 이용한 깊은 실리콘 식각)

  • 조수범;박세근;오범환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.701-707
    • /
    • 2004
  • High aspect ratio silicon structure through deep silicon etching process have become indispensable for advanced MEMS applications. In this paper, we present the results of modified Bosch process to obtain anisotropic silicon structure with conventional Inductively Coupled Plasma (ICP) etcher instead of the expensive Bosch process systems. In modified Bosch process, etching step ($SFsub6$) / sidewall passivation ($Csub4Fsub8$) step time is much longer than commercialized Bosch scheme and process transition time is introduced between process steps to improve gas switching and RF power delivery efficiency. To optimize process parameters, etching ($SFsub6$) / sidewall passivation ($Csub4Fsub8$) time and ion energy effects on etching profile was investigated. Etch profile strongly depends on the period of etch / passivation and ion energy. Furthermore, substrate temperature during etching process was found to be an important parameter determining etching profile. Test structures with different pattern size have been etched for the comparison of the aspect ratio dependent etch rate and the formation of silicon grass. At optimized process condition, micropatterns etched with modified Bosch process showed nearly vertical sidewall and no silicon grass formation with etch rate of 1.2 ${\mu}{\textrm}{m}$/ min and the size of scallop of 250 nm.

Ordered Macropores Prepared in p-Type Silicon (P-형 실리콘에 형성된 정렬된 매크로 공극)

  • Kim, Jae-Hyun;Kim, Gang-Phil;Ryu, Hong-Keun;Suh, Hong-Suk;Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.241-241
    • /
    • 2008
  • Macrofore formation in silicon and other semiconductors using electrochemical etching processes has been, in the last years, a subject of great attention of both theory and practice. Its first reason of concern is new areas of macropore silicone applications arising from microelectromechanical systems processing (MEMS), membrane techniques, solar cells, sensors, photonic crystals, and new technologies like a silicon-on-nothing (SON) technology. Its formation mechanism with a rich variety of controllable microstructures and their many potential applications have been studied extensively recently. Porous silicon is formed by anodic etching of crystalline silicon in hydrofluoric acid. During the etching process holes are required to enable the dissolution of the silicon anode. For p-type silicon, holes are the majority charge carriers, therefore porous silicon can be formed under the action of a positive bias on the silicon anode. For n-type silicon, holes to dissolve silicon is supplied by illuminating n-type silicon with above-band-gap light which allows sufficient generation of holes. To make a desired three-dimensional nano- or micro-structures, pre-structuring the masked surface in KOH solution to form a periodic array of etch pits before electrochemical etching. Due to enhanced electric field, the holes are efficiently collected at the pore tips for etching. The depletion of holes in the space charge region prevents silicon dissolution at the sidewalls, enabling anisotropic etching for the trenches. This is correct theoretical explanation for n-type Si etching. However, there are a few experimental repors in p-type silicon, while a number of theoretical models have been worked out to explain experimental dependence observed. To perform ordered macrofore formaion for p-type silicon, various kinds of mask patterns to make initial KOH etch pits were used. In order to understand the roles played by the kinds of etching solution in the formation of pillar arrays, we have undertaken a systematic study of the solvent effects in mixtures of HF, N-dimethylformamide (DMF), iso-propanol, and mixtures of HF with water on the macrofore structure formation on monocrystalline p-type silicon with a resistivity varying between 10 ~ 0.01 $\Omega$ cm. The etching solution including the iso-propanol produced a best three dimensional pillar structures. The experimental results are discussed on the base of Lehmann's comprehensive model based on SCR width.

  • PDF

Selective Etching of Silicon in TMAH:IPA:Pyrazine Solutions (TMAH:IPA:Pyrazine 용액에서 실리콘의 선택식각)

  • Chung, Gwiy-Sang;Lee, Chae-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.112-116
    • /
    • 2000
  • This paper presents anisotropic ethcing characteristics of single-crystal silicon in tetramethylammonium hydroxide(TMAH):isopropyl alcohol(IPA) solutions containing pyrazine. With the addition of IPA to TMAH solutions, etching characteristics are exhibited that indicate an improvement in flatness on the etching front and a reduction in undercutting, but the etch rate on (100) silicon is decreased. The (100) silicon etch rate is improved by the addition of pyrazine. An etch rate on (100) silicon of $0.8\;{\mu}m/min$, which is faster by 13 % than a 20 wt.% solution of pure TMAH, is obtained using 20 wt.% TMAH:0.5 g/100 ml pyrazine solutions, but the etch rate on (100) silicon is decreased if more pyrazine is added. With the addition of pyrazine to a 25 wt.% TMAH solution, variations in flatness on the etching front were not observed and the undercutting ratio was reduced by 30 ~ 50 %.

  • PDF

The Effect of Pyrazine on TMAH:IPA Single-crystal Silicon Anisotropic Etching Properties

  • Gwiy-Sang Chung;Tae-Song Kim
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.21-25
    • /
    • 2001
  • This paper presents the effect of pyrazine on tetramethylammonium hydroxide (TMAH):isopropyl alcohol (IPA) single-crystal silicon anisotropic etching properties. With the addition of IPA to TMAH solutions, etching characteristics are exhibited an improvement in flatness on the etching front and a reduction in undercutting, but the etch rate on (100) silicon is decreased. The (100) silicon etch rate is improved by the addition of pyrazine. An etch rate on (100) silicon of 0.8 ${\mu}{\textrm}{m}$/min, which is faster by 13% than a 20 wt.% solution of pure TMAH, is obtained using 20 wt.% TMAH: 0.5 g/100 ml pyrazine solutions, but the etch rate on (100) silicon is decreased when more pyrazine is added. With the addition of pyrazine to a 25 wt.% TMAH solution, variations in flatness on the etching front are not observed and the undercutting ratio is reduced by 30~50%. These results indicate that anisotropic etching technology using TMAH:IPA:pyrazine solutions provides a powerful and versatile method for realizing of microelectromechanical systems.

  • PDF

Structural and Optical Properties of Porous Silicon Prepared by Electrochemical Etching

  • Lee, Jeong-Seok;Cho, Nam-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.109-112
    • /
    • 2002
  • The structural and optical features of Porous Silicon(PS) were investigated; the porous silicon was prepared by electrochemical etching of silicon wafers in HF solution. The morphologies and Photoluminescece(PL) features of the PS were investigated in terms of etching time, current density and aging conditions. The average pore diameter and pore depth were determined by current density and etching time, respectively. As-prepared PS exhibited the maximum PL peak at the wavelength of ∼ 450 nm. The degree of deviation from as-prepared PS during aging treatment seemed to depend on the microstructure as well as morphology of the PS. It is found that etching current density played an important role on the microstructural features of the PS.

Investigation of the Changes of Fabry-Perot Fringe Patterns in Porous Silicon During Etching Process

  • Jang, Seunghyun
    • Journal of Integrative Natural Science
    • /
    • v.5 no.1
    • /
    • pp.13-17
    • /
    • 2012
  • Changes of Fabry-Perot fringe patterns in porous silicon during etching process has been investigated. Four porous silicon samples were prepared with four different etch currents: (a) 10 $mA/cm^2$, (b) 30 $mA/cm^2$, (c) 50 $mA/cm^2$, (d) 100 $mA/cm^2$, respectively. Optical characterization of Fabry-Perot fringe pattern on porous silicon was achieved by Ocean optics 2000 spectrometer. The change of Fabry-Perot fringes was monitored and measured during the etching process. Fabry-Perot fringes pattern start to form after couple of minutes. As the etching time increased, more reflection peaks were observed. Its full width at half maximum (FWHM) decreased rapidly when the etching time increased.

Fabrication of a (100) Silicon Master Using Anisotropic Wet Etching for Embossing

  • Jung, Yu-Min;Kim, Yeong-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.10 s.281
    • /
    • pp.645-648
    • /
    • 2005
  • To fabricate a (100) silicon hard master, we used anisotropic wet etching for the embossing. The etching chemical for the sili­con wafer was a TMAH 25$\%$ solution. The anisotropic wet etching produces a smooth sidewall surface inclined at 54.7°, and the surface roughness of the fabricated master is about 1 nm. After spin coating an organic-inorganic sol-gel hybrid resin on a silicon substrate, we used the fabricated master to form patterns on the silicon substrate. Thus, we successfully obtained patterns via the hot embossing technique with the (100) silicon hard master. Moreover, by using a single hydrophobic surface treatment of the master, we succeeded in achieving uniform surface roughness of the embossed patterns for more than ten embossments.

엑사이머 레이져를 이용한 실리콘웨이퍼의 미세가공

  • 윤경구;이성국;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1058-1062
    • /
    • 1997
  • Development of laser induced chemical etching technologt with KrF laser are carried out in this study for micromachining of silicon wafer. The paper is devoted to experimental identification of excimer laser induced mechanism of silicon under chlorine pressures(0.02~500torr). Experimental results on pulsed KrF excimer laser etching of silicon in chorine atmosphere are presented. Etching rate dependency on laser fluence and chlorine pressure are discussed on the basis of experimental analysis, it is concluded that accurate digital micro machining process of silicon wafer can achieved by KrF laser induced chemical etching technology.