• Title/Summary/Keyword: single cell oil

Search Result 49, Processing Time 0.027 seconds

Property of Yeast Cell Protein from Rice Bran Oil (미강유를 이용한 효모균체 단백질의 특성)

  • 안태영
    • The Korean Journal of Food And Nutrition
    • /
    • v.3 no.1
    • /
    • pp.35-38
    • /
    • 1990
  • For the purpose of the production of single cell protein from rice bran oil, yeast was isolating from soil. It was belonging to Candida albicans Species. These experiments were conducted to find out the property on yeast cell from rice bran oil Molecular weight for the main protein on yeast cell protein from rice bran oil separated by 1% SDS polyacrylamide gel electrophorosis was 22, 000.

  • PDF

Production of Single-Cell Protein on Petroleum Hydrocarbon (석유탄화수소를 이용한 단세포단백질의 생산에 관한 연구 3)

  • 변유량;권태완
    • Korean Journal of Microbiology
    • /
    • v.9 no.3
    • /
    • pp.95-102
    • /
    • 1971
  • The growth characteristics of Candida tropicalis KIST 351 on gas oil substrate under different culture conditions were investigated and the preliminary animal feeding experiments using this yeast as a partial substitute of fish meal was also conducted. The yeast assimilates effectively n-paraffins in gas oil ranging from $C_{16}$ to $C_{16}$ with its maximum cell growth at $33^{\circ}C$ and pH 5.5 with aeration of 3 vvn and agitation of 900 rpm. The optimal concentrations of nitrogen sources, $HK_2PO_4$ and $Na_2HPO$ were 4, 2 and 0.5g/1, respectively. Ferrous sulfate, manganese sulfate and zinc sulfate showed positive effect to cell growth with the optimal range of 5-10 ppm. In the feeding experiment with 3 and 5% incorporation of the gas oil grown yeast, neither adverse effects on growth of chicks nor toxic effect were observed. Protein content of the dried cell was 58.8% and its amino acid composition compared well with other single-cell protein products and FAO reference protein.

  • PDF

Visualization of Phytophthora palmivora Infection in Oil Palm Leaflets with Fluorescent Proteins and Cell Viability Markers

  • Ochoa, Juan C.;Herrera, Mariana;Navia, Monica;Romero, Hernan Mauricio
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.19-31
    • /
    • 2019
  • Bud rot (BR) is the most devastating disease affecting oil palm (Elaeis guineensis) crops in Colombia. Its causal agent, Phytophthora palmivora, initiates the infection in immature oil palm leaflets producing necrotic lesions, followed by colonization of opportunistic necrotrophs, which increases disease damage. To improve the characterization of the disease, we transformed P. palmivora using Agrobacterium tumefaciens-mediated transformation (ATMT) to include the fluorescent proteins CFP-SKL (peroxisomal localization), eGFP and mRFP1 (cytoplasmic localization). The stability of some transformants was confirmed by Southern blot analysis and single zoospore cultures; additionally, virulence and in vitro growth were compared to the wild-type isolate to select transformants with the greatest resemblance to the WT isolate. GFP-tagged P. palmivora was useful to identify all of the infective structures that are commonly formed by hemibiotrophic oomycetes, including apoplastic colonization and haustorium formation. Finally, we detected cell death responses associated with immature oil palm tissues that showed reduced susceptibility to P. palmivora infection, indicating that these tissues could exhibit age-related resistance. The aim of this research is to improve the characterization of the initial disease stages and generate cell biology tools that may be useful for developing methodologies for early identification of oil palm materials resistant or susceptible to BR.

Single Cell Oil Production from Undetoxified Arundo donax L. hydrolysate by Cutaneotrichosporon curvatus

  • Di Fidio, Nicola;Liuzzi, Federico;Mastrolitti, Silvio;Albergo, Roberto;De Bari, Isabella
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.256-267
    • /
    • 2019
  • The use of low-cost substrates represents one key issue to make single cell oil production sustainable. Among low-input crops, Arundo donax L. is a perennial herbaceous rhizomatous grass containing both C5 and C6 carbohydrates. The scope of the present work was to investigate and optimize the production of lipids by the oleaginous yeast Cutaneotrichosporon curvatus from undetoxified lignocellulosic hydrolysates of steam-pretreated A. donax. The growth of C. curvatus was first optimized in synthetic media, similar in terms of sugar concentration to hydrolysates, by applying the response surface methodology (RSM) analysis. Then the bioconversion of undetoxified hydrolysates was investigated. A fed-batch process for the fermentation of A. donax hydrolysates was finally implemented in a 2-L bioreactor. Under optimized conditions, the total lipid content was 64% of the dry cell weight and the lipid yield was 63% of the theoretical. The fatty acid profile of C. curvatus triglycerides contained 27% palmitic acid, 33% oleic acid and 32% linoleic acid. These results proved the potential of lipid production from A. donax, which is particularly important for their consideration as substitutes for vegetable oils in many applications such as biodiesel or bioplastics.

Effects of Evening Primrose Oil on the Immune Responses in Mice (월견초종자유가 생쥐의 면역반응에 미치는 영향)

  • Ahn, Young-Keun;Oh, Yun-Joon;Kim, Joung-Hoon
    • YAKHAK HOEJI
    • /
    • v.36 no.2
    • /
    • pp.93-109
    • /
    • 1992
  • The purpose of this experiment was to investigate both the immunomodulatory effect of evening primrose(EP) oil and the effects of EP oil on immunoregulation by cyclophosphamide in mice. EP oil at doses of 0.1, 0.2 and 0.4 ml/kg were orally administered to ICR male mice once daily for 28 consecutive days. Cyclophosphamide was injected intraperitoneally to ICR mice with a single dose of 5 mg/kg at 2 days before secondary immunization. Mice were sensitized and challenged with sheep red blood cells(S-RBC). Immnune responses were evaluated by humoral and cellular immune responses and non-specific immune response. The results of this study were summarized as follows; (1) The humoral immune responses such as hemagglutination titer(HA), hemolysin titer(HY), Arthus reaction and plaque forming cell(PFC) were significantly enhanced in the low dose EP oil administered groups(0.1 and 0.2 ml/kg). However, in the high dose EP oil administered group(0.4 ml/kg) the responses were significantly lowered. (2) In the case of cellular immune responses, delayed type hypersensitivity reaction(DTH) was significantly decreased in EP oil whereas rosette forming cell(RFC) was remarkably enhanced. (3) Activities of natural killer cells and phagocyte were generally enhanced in EP oil. In addition, serum albumin and globulin were also increased.

  • PDF

Fungal Production of Single Cell Oil Using Untreated Copra Cake and Evaluation of Its Fuel Properties for Biodiesel

  • Khot, Mahesh;Gupta, Rohini;Barve, Kadambari;Zinjarde, Smita;Govindwar, Sanjay;RaviKumar, Ameeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.459-463
    • /
    • 2015
  • This study evaluated the microbial conversion of coconut oil waste, a major agro-residue in tropical countries, into single cell oil (SCO) feedstock for biodiesel production. Copra cake was used as a low-cost renewable substrate without any prior chemical or enzymatic pretreatment for submerged growth of an oleaginous tropical mangrove fungus, Aspergillus terreus IBB M1. The SCO extracted from fermented biomass was converted into fatty acid methyl esters (FAMEs) by transesterification and evaluated on the basis of fatty acid profiles and key fuel properties for biodiesel. The fungus produced a biomass (8.2 g/l) yielding 257 mg/g copra cake SCO with ~98% FAMEs. The FAMEs were mainly composed of saturated methyl esters (61.2%) of medium-chain fatty acids (C12-C18) with methyl oleate (C18:1; 16.57%) and methyl linoleate (C18:2; 19.97%) making up the unsaturated content. A higher content of both saturated FAMEs and methyl oleate along with the absence of polyunsaturated FAMEs with ≥4 double bonds is expected to impart good fuel quality. This was evident from the predicted and experimentally determined key fuel properties of FAMEs (density, kinematic viscosity, iodine value, acid number, cetane number), which were in accordance with the international (ASTM D6751, EN 14214) and national (IS 15607) biodiesel standards, suggesting their suitability as a biodiesel fuel. The low cost, renewable nature, and easy availability of copra cake, its conversion into SCO without any thermochemical pretreatment, and pelleted fungal growth facilitating easier downstream processing by simple filtration make this process cost effective and environmentally favorable.

Extraction of Lipids from Microalgae Using Polar and Nonpolar Bi-solvent Systems (이성분 용매 추출에 의한 미세조류로 부터의 바이오디젤용 지질 분리)

  • Hong, Yeon-Ki;Kim, Jeong-Bae;Ng, K.Y. Simon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.66-71
    • /
    • 2011
  • Various single solvents were tested to find the effective solvent for the extraction of algae oil from wet-form Chlorella minutissima. In the case of single solvents, their extractabilities for algae oil were increased with their polarity because the water in wet algae cell is to form a solvent shell around the lipids. Based on these results, the wet-form algae samples were treated with a polar alcohol solvent and then a nonpolar solvent was added in algae residue. In the algae oil extraction by ethanol/n-hexane, total lipid contents were 40-50% and composition of triglyceride in extracted oil was 46.50%. Considering solvent toxicity of conventional solvent mixture such as chloroform and methanol for algae oil extraction, the ethanol/n-hexane system was identified as the effective one for the oil extraction from wet-form Chlorella minutissima.

Bleaching of Lipids Extracted from Single Cell Oil Produced by Mortierella sp. (모르티에렐라(Mortierella)속 유래 단세포유지로부터 추출한 지방질의 탈색)

  • Kim, Sun-Ki;Chung, Guk-Hoon;Han, Jeong-Jun;Cho, Sang Woo;Yoon, Suk Hoo
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.405-408
    • /
    • 2015
  • The deacidified oil obtained from the oleaginous fungus, Mortierella sp. (M-12) was bleached, after degumming, using activated clay under a 50-100 mmHg vacuum. The bleaching conditions were partially optimized as follows: activated clay, 1%, bleaching temperature $90^{\circ}C$, and treatment time 20 min. After bleaching, the color of bleached oil as determined by the Lovibond Tintometer, satisfied the specification for edible fats and oils. The bleaching process also decreased the contents of free fatty acids and phosphorus in the deacidified oil. The acid value of the bleached oil also satisfied the specification for edible fats and oils. It was early shown that the normal bleaching process can be used for the bleaching of heavily-colored microbial lipids for human consumption.

Production of Single-Cell Protein on Petroleum Hydrocarbon Part 6. Selection of the Strains for Mixed Cultivation and Evaluation of the Medium Composition (석유탄화수소를 이용한 단세포단백질의 생산에 관한 연구 제 6 보 혼합배양균주의 선정 및 배지조성의 검토)

  • Mheen, Tae-Ick;Pyun, Yoo-Ryang;Kwon, Tai-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.219-230
    • /
    • 1974
  • For the production of single cell protein from n-paraffin, yeasts utilizing n-paraffin and ethanol were isolated from oil deposit and oil field soils. The mixed cultivation between yeasts assimilating n-paraffin and ethanol was carried out to increase cell yield. Finally, selected strains were identified and suitable medium composition for mixed culture was compared with that of single cultures using flask and 5 l-jar fermentor. Yeasts grow on n-paraffin and ethanol were identified as Candida tropicalis var. KIST 76 and Trichosporon cutaneum KIST 76H respectively. By mixed cultivation under the suitable medium composition using 5 l-jar fermentor, maximum dry cell weight reached 20 g/l after 12 hrs. cultivation and it's protein content was 58%. Yield has been increased about 25% and protein content has been increased 6.7% compared to that of single culture, Candida tropicalis var. KIST 76, after 16 hrs. cultivation.

  • PDF

Single Cell Oil-Recent Trends in Microbial Production and Utilization (미생물에 의한 단세포유지의 생산과 이용)

  • Kim, Yong-Ro;Yoon, Suk Hoo
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.687-697
    • /
    • 2015
  • With the shortage of edible fats and oils and depletion of fossil fuels in many countries, microbial lipids is emerging as one of the most promising sources of fats and oils in the global market. Oleaginous microorganisms, also called single cell oils (SCOs), can accumulate lipids more than 25% in the cell volume. Triacylglycerols are the major storage lipids. SCOs offer several advantages for lipid production as follows: SCOs have short life span which would shorten production time, cultivation conditions are not affected by climate and place; the production process is easy to control. There are a number of oleaginous yeasts, molds, and microalgae. Furthermore, the lipid productivity of SCOs can be enhanced through strain improvement and the optimization of cultivation conditions. The new strains developed using recent advanced biotechnical methods showed greatly improved oleaginicity. Further, hydrolysates of lignocellulosic materials can be used as carbon sources for economic production of SCO.