• 제목/요약/키워드: single nucleotide polymorphism

검색결과 848건 처리시간 0.036초

Large Cohort Association of Single Nucleotide Polymorphism of PLA2G4A Gene with White Blood Cell Counts in Korean Population

  • Jung, Suk-Yul
    • 대한의생명과학회지
    • /
    • 제18권1호
    • /
    • pp.71-75
    • /
    • 2012
  • The PLA2G4A catalyzes the hydrolysis of membrane phospholipids to release arachidonic acid, which is metabolized into lipid-based cellular hormones that regulate inflammatory response. The circulating blood cell numbers can be influenced by stress, infection or inflammation. Quantitative blood cell count traits analysis for the 19 SNPs in the PLA2G4A gene in the Korean Association Resource (KARE) cohort (7551 subjects) was performed. The only one SNP (rs10752979) in the all blood cell count was satisfied with the Bonferroni corrected P-value (<0.00263). Furthermore, 6 of the 19 SNPs in the PLA2G4A gene showed a weak or moderate association with blood cell count (P-values: 0.0048~0.042), suggesting the clue of an association between the PLA2G4A gene and blood cell count, especially white blood cell count. This study may provide insight into the genetic basis of blood cell count related with reaction of infection.

Association between Single Nucleotide Polymorphisms of the Major Histocompatibility Complex Class II Gene and Newcastle Disease Virus Titre and Body Weight in Leung Hang Khao Chickens

  • Molee, A.;Kongroi, K.;Kuadsantia, P.;Poompramun, C.;Likitdecharote, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권1호
    • /
    • pp.29-35
    • /
    • 2016
  • The aim of the present study was to investigate the effect of single nucleotide polymorphisms in the major histocompatibility complex (MHC) class II gene on resistance to Newcastle disease virus and body weight of the Thai indigenous chicken, Leung Hang Khao (Gallus gallus domesticus). Blood samples were collected for single nucleotide polymorphism analysis from 485 chickens. Polymerase chain reaction sequencing was used to classify single nucleotide polymorphisms of class II MHC. Body weights were measured at the ages of 3, 4, 5, and 7 months. Titres of Newcastle disease virus at 2 weeks to 7 months were determined and the correlation between body weight and titre was analysed. The association between single nucleotide polymorphisms and body weight and titre were analysed by a generalized linear model. Seven single nucleotide polymorphisms were identified: C125T, A126T, C209G, C242T, A243T, C244T, and A254T. Significant correlations between log titre and body weight were found at 2 and 4 weeks. Associations between single nucleotide polymorphisms and titre were found for C209G and A254T, and between all single nucleotide polymorphisms (except A243T) and body weight. The results showed that class II MHC is associated with both titre of Newcastle disease virus and body weight in Leung Hang Khao chickens. This is of concern because improved growth traits are the main goal of breeding selection. Moreover, the results suggested that MHC has a pleiotropic effect on the titre and growth performance. This mechanism should be investigated in a future study.

Relationships between Single Nucleotide Polymorphism Markers and Meat Quality Traits of Duroc Breeding Stocks in Korea

  • Choi, J.S.;Jin, S.K.;Jeong, Y.H.;Jung, Y.C.;Jung, J.H.;Shim, K.S.;Choi, Y.I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권9호
    • /
    • pp.1229-1238
    • /
    • 2016
  • This study was conducted to determine the relationships of five intragenic single nucleotide polymorphism (SNP) markers (protein kinase adenosine monophosphate-activated ${\gamma}3$ subunit [PRKAG3], fatty acid synthase [FASN], calpastatin [CAST], high mobility group AT-hook 1 [HMGA1], and melanocortin-4 receptor [MC4R]) and meat quality traits of Duroc breeding stocks in Korea. A total of 200 purebred Duroc gilts from 8 sires and 40 dams at 4 pig breeding farms from 2010 to 2011 reaching market weight (110 kg) were slaughtered and their carcasses were chilled overnight. Longissimus dorsi muscles were removed from the carcass after 24 h of slaughter and used to determine pork properties including carcass weight, backfat thickness, moisture, intramuscular fat, $pH_{24h}$, shear force, redness, texture, and fatty acid composition. The PRKAG3, FASN, CAST, and MC4R gene SNPs were significantly associated with the meat quality traits (p<0.003). The meats of PRKAG3 (A 0.024/G 0.976) AA genotype had higher pH, redness and texture than those from PRKAG3 GG genotype. Meats of FASN (C 0.301/A 0.699) AA genotype had higher backfat thickness, texture, stearic acid, oleic acid and polyunsaturated fatty acid than FASN CC genotype. While the carcasses of CAST (A 0.373/G 0.627) AA genotype had thicker backfat, and lower shear force, palmitoleic acid and oleic acid content, they had higher stearic acid content than those from the CAST GG genotype. The MC4R (G 0.208/A 0.792) AA genotype were involved in increasing backfat thickness, carcass weight, moisture and saturated fatty acid content, and decreasing unsaturated fatty acid content in Duroc meat. These results indicated that the five SNP markers tested can be a help to select Duroc breed to improve carcass and meat quality properties in crossbred pigs.

Genome-wide Single Nucleotide Polymorphism Analyses Reveal Genetic Diversity and Structure of Wild and Domestic Cattle in Bangladesh

  • Uzzaman, Md. Rasel;Edea, Zewdu;Bhuiyan, Md. Shamsul Alam;Walker, Jeremy;Bhuiyan, A.K.F.H.;Kim, Kwan-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권10호
    • /
    • pp.1381-1386
    • /
    • 2014
  • In spite of variation in coat color, size, and production traits among indigenous Bangladeshi cattle populations, genetic differences among most of the populations have not been investigated or exploited. In this study, we used a high-density bovine single nucleotide polymorphism (SNP) 80K Bead Chip derived from Bos indicus breeds to assess genetic diversity and population structure of 2 Bangladeshi zebu cattle populations (red Chittagong, n = 28 and non-descript deshi, n = 28) and a semi-domesticated population (gayal, n = 17). Overall, 95% and 58% of the total SNPs (69,804) showed polymorphisms in the zebu and gayal populations, respectively. Similarly, the average minor allele frequency value was as high 0.29 in zebu and as low as 0.09 in gayal. The mean expected heterozygosity varied from $0.42{\pm}0.14$ in zebu to $0.148{\pm}0.14$ in gayal with significant heterozygosity deficiency of 0.06 ($F_{IS}$) in the latter. Coancestry estimations revealed that the two zebu populations are weakly differentiated, with over 99% of the total genetic variation retained within populations and less than 1% accounted for between populations. Conversely, strong genetic differentiation ($F_{ST}=0.33$) was observed between zebu and gayal populations. Results of population structure and principal component analyses suggest that gayal is distinct from Bos indicus and that the two zebu populations were weakly structured. This study provides basic information about the genetic diversity and structure of Bangladeshi cattle and the semi-domesticated gayal population that can be used for future appraisal of breed utilization and management strategies.

Single Nucleotide Polymorphism of Interferon Lambda-4 Gene is not Associated with Treatment Response to Pegylated Interferon in Thai Patients with Chronic Hepatitis B

  • Limothai, Umaporn;Wasitthankasem, Rujipat;Poovorawan, Yong;Tangkijvanich, Pisit
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권13호
    • /
    • pp.5515-5519
    • /
    • 2015
  • The single nucleotide polymorphism (SNP) ss469415590 in the interferon lambda-4 (IFNL4) gene has recently been reported to have an association with treatment response in chronic hepatitis C. However, any importance of the SNP in association with response to pegylated interferon (PEG-IFN) therapy in patients with chronic hepatitis B (CHB) is unclear. We retrospectively analyzed data for Thai patients with CHB treated with PEG-IFN for 48 weeks. Virological response (VR) for HBeAg-positive CHB was defined as HBeAg seroconversion plus HBV DNA level <2,000 IU/mL at 24 weeks post-treatment. VR for HBeAg-negative CHB was defined as an HBV DNA level <2,000 IU/mL at 48 weeks. The SNP was identified by real time PCR using the TaqMan genotyping assay with MGB probes. A total 254 patients (107 HBeAg-positive and 147 HBeAg-negative) were enrolled in the study. The distribution of TT/TT, ${\Delta}G/TT$ and ${\Delta}G/{\Delta}G$ genotypes was 221 (87.0%), 32 (12.6%) and 1 (0.4%), respectively. Patients with non-TT/TT genotypes had significantly higher baseline HBV DNA levels than patients with the TT/TT genotype. In HBeAg-positive CHB, 41.2% of patients with TT/TT genotype versus 50.0% with non-TT/TT genotype achieved VR (P=0.593). In HBeAg-negative CHB, the corresponding figures were 40.3% and 43.5%, respectively (P=0.777). There was no significant correlation between the SNP genotypes and HBsAg clearance in both groups of patients. In summary, ss469415590 genotypes were not associated with response to PEG-IFN in Thai patients with HBeAg-positive and HBeAg-negative CHB.

Association Between Single Nucleotide Polymorphisms in the XRCC1 Gene and Susceptibility to Prostate Cancer in Chinese Men

  • Zhou, Yun-Feng;Zhang, Guang-Bo;Qu, Ping;Zhou, Jian;Pan, Hui-Xin;Hou, Jian-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권10호
    • /
    • pp.5241-5243
    • /
    • 2012
  • Background: Prostate cancer (Pca) is one of the most common complex and polygenic diseases in men. The X-ray repair complementing group 1 gene (XRCC1) is an important candidate in the pathogenesis of Pca. The purpose of this study was to evaluate the association between single nucleotide polymorphisms in the XRCC1 gene and susceptibility to Pca. Materials and Methods: XRCC1 gene polymorphisms and associations with susceptibility to Pca were investigated in 193 prostate patients and 188 cancer-free Chinese men. Results: The c.910A>G variant in the exon9 of XRCC1 gene could be detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing methods. Significantly increased susceptibility to prostate cancer was noted in the homozygote comparison (GG versus AA: OR=2.95, 95% CI 1.46-5.42, ${\chi}^2$=12.36, P=0.001), heterozygote comparison (AG versus AA: OR=1.76, 95% CI 1.12-2.51, ${\chi}^2$=4.04, P=0.045), dominant model (GG/AG versus AA: OR=1.93, 95% CI 1.19-2.97, ${\chi}^2$=9.12, P=0.003), recessive model (GG versus AG+AA: OR=2.17, 95% CI 1.33-4.06, ${\chi}^2$=8.86, P=0.003) and with allele contrast (G versus A: OR=1.89, 95% CI 1.56-2.42, ${\chi}^2$=14.67, P<0.000). Conclusions: These findings suggest that the c.910A>G polymorphism of the XRCC1 gene is associated with susceptibility to Pca in Chinese men, the G-allele conferring higher risk.

Comparison of the Microsatellite and Single Nucleotide Polymorphism Methods for Discriminating among Hanwoo (Korean Native Cattle), Imported, and Crossbred Beef in Korea

  • Heo, Eun-Jeong;Ko, Eun-Kyung;Seo, Kun-Ho;Chon, Jung-Whan;Kim, Young-Jo;Park, Hyun-Jung;Wee, Sung-Hwan;Moon, Jin-San
    • 한국축산식품학회지
    • /
    • 제34권6호
    • /
    • pp.763-768
    • /
    • 2014
  • The identity of 45 Hanwo and 47 imported beef (non-Hanwoo) samples from USA and Australia were verified using the microsatellite (MS) marker and single nucleotide polymorphism (SNP) methods. Samples were collected from 19 supermarkets located in the city of Seoul and Gyeonggi province, South Korea, from 2009 to 2011. As a result, we obtained a 100% concordance rate between the MS and SNP methods for identifying Hanwoo and non-Hanwoo beef. The MS method presented a 95% higher individual discriminating value for Hanwoo (97.8%) than for non-Hanwoo (61.7%) beef. For further comparison of the MS and SNP methods, blood samples were collected and tested from 54 Hanwoo ${\times}$ Holstein crossbred cattle (first, second, and third generations). By using the SNP and MS methods, we correctly identified all of the first-generation crossbred cattle as non-Hanwoo; in addition, among the second and third generation crossbreds, the ratio identified as Hanwoo was 20% and 10%, respectively. The MS method used in our study provides more information, but requires sophisticated techniques during each experimental process. By contrast, the SNP method is simple and has a lower error rate. Our results suggest that the MS and SNP methods are useful for discriminating Hanwoo from non-Hanwoo breeds.

Development of a single-nucleotide-polymorphism marker for specific authentication of Korean ginseng (Panax ginseng Meyer) new cultivar "G-1"

  • Yang, Dong-Uk;Kim, Min-Kyeoung;Mohanan, Padmanaban;Mathiyalagan, Ramya;Seo, Kwang-Hoon;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제41권1호
    • /
    • pp.31-35
    • /
    • 2017
  • Background: Korean ginseng (Panax ginseng) is a well-known medicinal plant of Oriental medicine that is still in practice today. Until now, a total of 11 Korean ginseng cultivars with unique features to Korean ginseng have been developed based on the pure-line-selection method. Among them, a new cultivar namely G-1 with different agricultural traits related to yield and content of ginsenosides, was developed in 2012. Methods: The aim of this study was to distinguish the new ginseng cultivar G-1 by identifying the unique single-nucleotide polymorphism (SNP) at its 45S ribosomal DNA and Panax quinquefolius region than other Korean ginseng cultivars using multiplex amplification-refractory mutation system-polymerase chain reaction (ARMS-PCR). Results: A SNP at position of 45S ribosomal DNA region between G-1, P. quinquefolius, and the other Korean ginseng cultivars was identified. By designing modified allele-specific primers based on this site, we could specifically identified G-1 and P. quinquefolius via multiplex PCR. The unique primer for the SNP yielded an amplicon of size 449 bp in G-1 cultivar and P. quinquefolius. This study presents an effective method for the genetic identification of the G-1 cultivar and P. quinquefolius. Conclusion: The results from our study shows that this SNP-based approach to identify the G-1 cultivar will be a good way to distinguish accurately the G-1 cultivar and P. quinquefolius from other Korean ginseng cultivars using a SNP at 45S ribosomal DNA region.

Single-nucleotide polymorphism-based epidemiological analysis of Korean Mycobacterium bovis isolates

  • Kim, Tae-Woon;Jang, Yun-Ho;Jeong, Min Kyu;Seo, Yoonjeong;Park, Chan Ho;Kang, Sinseok;Lee, Young Ju;Choi, Jeong-Soo;Yoon, Soon-Seek;Kim, Jae Myung
    • Journal of Veterinary Science
    • /
    • 제22권2호
    • /
    • pp.24.1-24.16
    • /
    • 2021
  • Background: Bovine tuberculosis (TB) is caused by Mycobacterium bovis, a well-known cause of zoonotic tuberculosis in cattle and deer, and has been investigated in many physiological and molecular studies. However, detailed genome-level studies of M. bovis have not been performed in Korea. Objectives: To survey whole genome-wide single-nucleotide polymorphism (SNP) variants in Korean M. bovis field isolates and to define M. bovis groups in Korea by comparing SNP typing with spoligotyping and variable number tandem repeat typing. Methods: A total of 46 M. bovis field isolates, isolated from laryngopharyngeal lymph nodes and lungs of Korean cattle, wild boar, and Korean water deer, were used to identify SNPs by performing whole-genome sequencing. SNP sites were confirmed via polymerase chain reaction using 87 primer pairs. Results: We identified 34 SNP sites with different frequencies across M. bovis isolates, and performed SNP typing and epidemiological analysis, which divided the 46 field isolates into 16 subtypes. Conclusions: Through SNP analysis, detailed differences in samples with identical spoligotypes could be detected. SNP analysis is, therefore, a useful epidemiological tracing tool that could enable better management of bovine TB, thus preventing further outbreaks and reducing the impact of this disease.