• Title/Summary/Keyword: single-crystalline Bi nanowire

Search Result 8, Processing Time 0.034 seconds

The Periods of Shubnikov-de Haas Oscillations in an Individual Single-Crystalline Bi Nanowire Grown by On-Film Formation of Nanowires

  • Kim, Jeong-Min;Ham, Jin-Hee;Lee, Seung-Hyun;Lee, Woo-Young
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2010.06a
    • /
    • pp.80-81
    • /
    • 2010
  • We observed period of SdH oscillation in an individual Bi nanowire with the transverse and longitudinal magnetic fields along the axis of the nanowire grown by OFF-ON. Our results provide good qualitative description of the cyclotron behavior of the single-crystalline Bi nanowire in the ballistic regime.

  • PDF

Sidewall effect in a stress induced method for Spontaneous growth of Bi nanowires

  • Kim, Hyun-Su;Ham, Jin-Hee;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.95-95
    • /
    • 2009
  • Single-crystalline Bi nanowires have motivated many researchers to investigate novel quasi-one-dimensional phenomena such as the wire-boundary scattering effect and quantum confinement effects due to their electron effective mass (~0.001 me). Single crystalline Bi nanowires were found to grow on as-sputtered films after thermal annealing at $270^{\circ}C$. This was facilitated by relaxation of stress between the film and the thermally oxidized Si substrate that originated from a mismatch of the thermal expansion. However, the method is known to produce relatively lower density of nanowires than that of other nanowire growth methods for device applications. In order to increase density of nanowire, we propose a method for enhancing compressive stress which is a driving force for nanowire growth. In this work, we report that the compressive stress can be controlled by modifying a substrate structure. A combination of photolithography and a reactive ion etching technique was used to fabricate patterns on a Si substrate. It was found that the nanowire density of a Bi film grown on $100{\mu}m{\times}100{\mu}m$ pattern Si substrate increased over seven times higher than that of a Bi sample grown on a normal substrate. Our results show that density of nanowire can be enhanced by sidewall effect in optimized proper pattern sizes for the Bi nanowire growth.

  • PDF

Ordinary Magnetoresistance of an Individual Single-crystalline Bi Nanowire (자발 성장법으로 성장된 단결정 Bi 단일 나노선의 정상 자기 저항 특성)

  • Shim, Woo-Young;Kim, Do-Hun;Lee, Kyoung-Il;Jeon, Kye-Jin;Lee, Woo-Young;Chang, Joon-Yeon;Han, Suk-Hee;Jeung, Won-Young;Johnson, Mark
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.166-171
    • /
    • 2007
  • We report the magneto-transport properties of an individual single crystalline Bi nanowire grown by a spontaneous growth method. We have successfully fabricated a four-terminal device based on an individual 400-nm-diameter nanowire using plasma etching technique to remove an oxide layer forming on the outer surface of the nanowire. The transverse MR (2496% at 110 K) and longitudinal MR ratios (38% at 2 K) for the Bi nanowire were found to be the largest known values in Bi nanowires. This result demonstrates that the Bi nanowires grown by the spontaneous growth method are the highest-quality single crystalline in the literatures ever reported. We find that temperature dependence of Fermi energy ($E_F$) and band overlap (${\triangle}_0$) leads to the imbalance between electron concentration ($n_e$) and hole concentration ($n_h$) in the Bi nanowire, which is good agreement with the calculated $n_e\;and\;n_h$ from the respective density of states, N(E), for electrons and holes. We also find that the imbalance of $n_e\;and\;n_h$ plays a crucial role in determining magnetoresistance (MR) at T<75 K for $R_T$ and at T<205 K for $R_L$, while mean-free path is responsible for MR at T>75 K for $R_T$ and T>205 K for $R_L$.

Shubnikov-de Haas Oscillations in an Individual Single-Crystalline Semimetal Bismuth Nanowire (단결정 반금속 비스무스 단일 나노선의 Shubnikov-de Haas 진동)

  • Kim, Jeong-Min;Ham, Jin-Hee;Shim, Woo-Young;Lee, Kyoung-Il;Jeon, Kye-Jin;Jeung, Won-Young;Lee, Woo Young
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.103-106
    • /
    • 2008
  • The magneto-transport properties of an individual single crystalline Bi nanowire grown by a spontaneous growth method are reported. A four-terminal device based on an individual 400-nm-diameter nanowire was successfully fabricated using a plasma etching technique that removed an oxide layer that had formed on the surface of the nanowire. Large transverse ordinary magnetoresistance (1401%) and negative longitudinal ordinary magnetoresistance (-38%) were measured at 2 K. It was observed that the period of Shubnikov-de Haas oscillations in transverse geometry was $0.074^{T-1}$, $0.16^{T-1}$ and $0.77^{T-1}$, which is in good agreement with those of bulk Bi. However, it was found that the period of SdH oscillation in longitudinal geometry is $0.24^{T-1}$, which is larger than the value of $0.16^{T-1}$ reported for bulk Bi. The deviation is attributable to the spatial confinement arising from scattering at the nanowire surface boundary.

On-Film Formation of Nanowires for High-efficiency Thermoelectric Devices

  • Ham, Jin-Hee;Shim, Woo-Young;Lee, Seung-Hyun;Voorhees, Peter W.;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.17-17
    • /
    • 2009
  • We report the invention of a direct growth method termed On-Film Formation of Nanowire (OFF-ON) for making high-quality single-crystal nanowires, i.e. Bi and $Bi_2Te_3$, without the use of conventional templates, catalysts, or starting materials. We have used the OFF-ON technique to grow single crystal semi-metallic Bi and compound semiconductor $Bi_2Te_3$ nanowires from sputtered Bi and BiTe films after thermal annealing, respectively. The mechanism for nanowire growth is stress-induced mass flow along grain boundaries in the polycrystalline films. OFF-ON is a simple but powerful method for growing perfect single-crystal semi-metallic and compound semiconductor nanowires of high aspect ratio with high crystallinity that distinguishes it from other competitive growth approaches that have been developed to date. Our results suggest that Bi and $Bi_2Te_3$ nanowires grown by OFF-ON can be an ideal material system for exploring their unique thermoelectric properties due to their high-quality single crystalline and high conductivity, which have consequence and relevance for high-efficiency thermoelectric devices.

  • PDF

Thermal conductivity of individual single-crystalline Bi nanowires grown by stress-induced recrystallization

  • Roh, Jong-Wook;Chen, Ren-Kun;Lee, Jun-Min;Ham, Jin-Hee;Lee, Seung-Hyn;Hochbaum, Allon;Hippalgaonkar, Kedar;Yang, Pei-Dong;Majumdar, Arun;Kim, Woo-Chul;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.23-23
    • /
    • 2009
  • It has been challenging to increase the thermoelectric figure of merit ($ZT=S^2{\sigma}T/\kappa$) of materials, which determine the efficiency of thermoelectric devices, because the three parameters Seebeck coefficient (S), electrical conductivity ($\sigma$), and thermal conductivity ($\kappa$) of bulk materials are inter-dependent. With the development of nanotechnology, ZT values of nanostructured materials are predicted to be enhanced by classical size effects and quantum confinement effects. In particular, Bi nanowires were suggested as one of ideal thermoelectric materials due to the expected quantum confinement effects for the simultaneous increase in Sand. In this work, we have investigated the thermal conductivity of individual single crystalline Bi nanowires with d = 98 nm and d = 327 nm in the temperature range 40 - 300 K using MEMS devices. The for the Bi nanowire with d = 98 nm was observed to be ~ 1.6 W/m-K at 300 K, which is much lower than that of Bi bulk (8 W/m-K at 300 K). This indicates that the thermal conductivity of the Bi suppressed due to enhanced surface boundary scattering in one-dimensional structures. Our results suggest that Bi nanowires grown by stress-induced method can be used for high-efficiency thermoelectric devices.

  • PDF

Bi-Te Core/Shell Nanowires Synthesis Based on On-Film Formation of Nanowires Method for Thermoelectric Applications (압축응력에 의한 박막 위 나노선 성장법을 이용한 Bi-Te 코어/쉘 열전 나노선 합성)

  • Kang, Joohoon;Ham, Jinhee;Roh, Jong Wook;Noh, Jin-Seo;Lee, Wooyoung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.445-448
    • /
    • 2010
  • For an enhanced thermoelectric performance, one-dimensional heterostructure nanowires were created that consisted of aBi core and Te shell. The structure was fabricated by depositing Te in-situ onto a Bi nanowire grown by our unique OFF-ON (on-film formation of nanowires) method. After examining a cross-sectional TEM image, it was found that diffusive interface was formed between Bi and Te. Selected area electron diffraction revealed that the crystallinity of the Te shell was some what lower compared to the highly single-crystalline Bi core. The Bi-Te core/shell nanowires can be a smart structure that suppresses phonon transport by several scattering mechanisms, making the OFF-ON method the simplest way to realize that structure.