• Title/Summary/Keyword: single-phase APF

Search Result 28, Processing Time 0.022 seconds

Single-phase Active Power Filter Based on Rotating Reference Frame Method for Harmonics Compensation

  • Kim, Jin-Sun;Kim, Young-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.94-100
    • /
    • 2008
  • This paper presents a new control method of single-phase active power filter (APF) for the compensation of harmonic current components in nonlinear loads. To facilitate the possibility of complex calculation for harmonic current detection of the single phase, a single-phase system that has two phases was constructed by including an imaginary second-phase giving time delay to the load current. The imaginary phase, which lagged the load current T/4 (Here T is the fundamental cycle) is used in the conventional method. But in this proposed method, the new signal as the second phase is delayed by the filter. Because this control method is applied to a single-phase system, an instantaneous calculation was developed by using the rotating reference frames synchronized to source-frequency rather than by applying instantaneous reactive power theory that uses the conventional fixed reference frames. The control scheme of single-phase APF for the current source with R-L loads is applied to a laboratory prototype to verify the proposed control method.

Novel Fast Peak Detector for Single- or Three-phase Unsymmetrical Voltage Sags

  • Lee, Sang-Hoey;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.658-665
    • /
    • 2011
  • In the present paper, a novel fast peak detector for single- or three-phase unsymmetrical voltage sags is proposed. The proposed detector is modified from a single-phase digital phase-locked loop based on a d-q transformation using an all-pass filter (APF). APF generates a virtual phase with $90^{\circ}$ phase delay. However, this virtual phase cannot reflect a sudden change of the grid voltage in the moment of voltage sag, which causes a peak value to be significantly distorted and to settle down slowly. Specifically, the settling time of the peak value is too long when voltage sag occurs around a zero crossing, such as phase $0^{\circ}$ and $180^{\circ}$. This paper describes the operating principle of the APF problem and proposes a modified all-pass filter (MAPF) to mitigate the inherent APF problem. In addition, a new fast peak detector using MAPF is proposed. The proposed detector is able to calculate a peak value within 0.5 ms, even when voltage sag occurs around zero crossing. The proposed fast peak detector is compared with the conventional detector using APF. Results show that the proposed detector has faster detection time in the whole phase range. Furthermore, the proposed fast peak detector can be effectively applied to unsymmetrical three-phase voltage sags. Simulation and experimental results verify the advantages of the proposed detector and MAPF.

A Study on the Single Phase Voltage-Controlled Active Power Filter for Power Quality Improvement (전력품질 개선을 위한 단상 전압제어형 능동전력필터 시스템에 관한 연구)

  • 손진근
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.238-245
    • /
    • 2003
  • In this paper, a single Phase voltage source voltage-controlled active power filter(APF) for power quality improvement was proposed. The proposed APF has the performance of harmonic suppression and unity power factor correction. The performance of harmonic suppression can be obtained by controlling the waveshape of the APF output voltage to be sine wave. And, unity power factor is controlled by the reactive power control loop of the APF output. Simulation and experimental results using diode rectifier showed that the voltage-controlled APF, unlike the current-controlled APF, can reduce the voltage harmonics as well as current harmonics. Also the results showed that the input dover factor and power quality were greatly improved.

Fast Detection Algorithm for Voltage Sags and Swells Based on Delta Square Operation for a Single-Phase Inverter System

  • Lee, Woo-Cheol;Sung, Kook-Nam;Lee, Taeck-Kie
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.157-166
    • /
    • 2016
  • In this paper, a new sag and peak voltage detector is proposed for a single-phase inverter using delta square operation. The conventional sag detector is from a single-phase digital phase-locked loop (DPLL) that is based on d-q transformations using an all-pass filter (APF). The d-q transformation is typically used in the three-phase coordinate system. The APF generates a virtual q-axis voltage component with a 90° phase delay, but this virtual phase cannot reflect a sudden change in the grid voltage at the instant the voltage sag occurs. As a result, the peak value is drastically distorted, and it settles down slowly. A modified APF generates the virtual q-axis voltage component from the difference between the current and the previous values of the d-axis voltage component in the stationary reference frame. However, the modified APF cannot detect the voltage sag and peak value when the sag occurs around the zero crossing points such as 0° and 180°, because the difference voltage is not sufficient to detect the voltage sag. The proposed algorithm detects the sag voltage through all regions including the zero crossing voltage. Moreover, the exact voltage drop can be acquired by calculating the q-axis component that is proportional to the d-axis component. To verify the feasibility of the proposed system, the conventional and proposed methods are compared using simulations and experimental results.

DC-Link Active Power Filter for High-Power Single-Phase PWM Converters

  • Li, Hongbo;Zhang, Kai;Zhao, Hui
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.458-467
    • /
    • 2012
  • Single phase converters suffer from ripple power pulsating at twice the line frequency. The ripple power is usually absorbed by a bulky capacitor bank and/or a dedicative LC resonant link, resulting in a low power density and a high cost. An alternative solution is using a dc link active power filter (APF) to direct the pulsating power into another energy-storage component. The main dc link filter capacitor can then be reduced substantially. Based on a mainstream dc APF topology, this paper proposed a new control strategy incorporating both dual-loop control and repetitive control. The circuit parameter design is also re-examined from a control point of view. The proposed APF scheme has better control performance, and is more suited for high power applications since it works in CCM and with a low switching frequency.

The Study on Detecting Scheme of Voltage Sag using the Two Difference Voltage (이중 차 전압을 이용한 전압 새그 검출 기법에 관한 연구)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.65-73
    • /
    • 2014
  • In this paper, the detection scheme of the voltage variation using a two difference voltage is proposed. The conventional sag detector is from a single-phase digital phase-locked loop (DPLL) that is based on a d-q transformation using an all-pass filter (APF). The APF generates a virtual q-axis voltage component with $90^{\circ}$ phase delay but the APF cannot generate the virtual q-axis voltage depending on the phase of the grid voltage. To overcome the problem, q-axis voltage component is generated from difference between the current and previous value of d-axis voltage component in the stationary reference frame. However, the difference voltage around the zero crossing is not enough to detect the voltage sag. Therefore, the new detection scheme using the two difference voltage which can detect the sag around the zero crossing voltage is proposed.

A study on the Control Method of Single-Phase APF Using RRF Method (회전좌표계를 이용한 단상능동전력필터의 제어방법에 관한 연구)

  • 김영조;허진석;김영석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.576-584
    • /
    • 2003
  • This paper presents a new control method of single-phase active power filter(APF) for the compensation of harmonic current components in nonlinear loads. Constructing a imaginary second-phase giving time delay to load currents, making single-phase system into the system that has two phases, complex calculation is possible. In the previous method, it made a imaginary-phase lagged to the load current T/4(here T is the fundamental cycle), but in proposed method, the new signal, which has the delayed phase through the filter, using the phase-delay property of low-pass filter, was used to the second phase. Instantaneous calculation of harmonic current is possible, because two phase have different phase. In this paper, it was done with instantaneous calculation using the rotating reference frames(RRF) that synchronizes with source-frequency, a reference of compensation currents, not applying to instantaneous reactive power theory which uses the existed fixed reference frames. The simulation and experiment about R-L loads using the current source were carried out, and the effect of the proposed method was preyed through the result of this experiment.

Research on Discontinuous Pulse Width Modulation Algorithm for Single-phase Voltage Source Rectifier

  • Yang, Xi-Jun;Qu, Hao;Tang, Hou-Jun;Yao, Chen;Zhang, Ning-Yun;Blaabjerg, Frede
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.433-445
    • /
    • 2014
  • Single phase voltage source converter (VSC) is an important power electronic converter (PEC), including single-phase voltage source inverter (VSI), single-phase voltage source rectifier (VSR), single-phase active power filter (APF) and single-phase grid-connection inverter (GCI). As the fundamental part of large scale PECs, single-phase VSC has a wide range of applications. In the paper, as first, on the basis of the concept of the discontinuous pulse-width modulation (DPWM) for three-phase VSC, a new DPWM of single-phase VSR is presented by means of zero-sequence component injection. Then, the transformation from stationary frame (abc) to rotating frame (dq) is designed after reconstructing the other orthogonal current by means of one order all-pass filter. Finally, the presented DPWM based single-phase VSR is established analyzed and simulated by means of MATLAB/SIMULINK. In addition, the DPWMs presented by D. Grahame Holmes and Thomas Lipo are discussed and simulated in brief. Obviously, the presented DPWM can also be used for single-phase VSI, GCI and APF. The simulation results show the validation of the above modulation algorithm, and the DPWM based single-phase VSR has reduced power loss and increased efficiency.

Digital Control of Three Phase Active Filter System (3상 전류형 능동필터의 디지탈 제어)

  • Hwang, Jong-Gyu;Song, Sung-Hak;Mok, Hyung-Soo;Choe, Gyu-Ha;Kim, Han-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.431-433
    • /
    • 1995
  • Active Power Filters(APF) have been developed for several years to solve the harmonics disturbance problems on power system networks. This paper studies observer based digital algorithm and PWM technique for three phase current source APF by simulation. Both switching or outside white noises affect seriously at control signal for APF control system. Hence observer algorithm to reduce noises is used. A technique of generation gating patterns for the CSI topologies based on carrier PWM techniques is applied. The requirements imposed on gating signals are satisified by the appropriate combination of single phase switching patterns and short pulse generator.

  • PDF

The APF System to reduce both Voltage and Current Harmonics (전압 및 전류고조파 동시 저감을 위한 APF 시스템)

  • Shon, Jin-Geun;Kim, Byung-Jin;Na, Chae-Dong;Lee, Sung-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.46-48
    • /
    • 2003
  • A single phase voltage-controlled active power filter(APF) is introduced to improve power quality and to reduce harmonic generated from nolinear loads. Real and reactive power control scheme was addressed using a new power circuit model. By analyzing the reactive power, a unit power factor control scheme was proposed. Simulation and experiment results using a nonlinear diode rectifier showed that the voltage-controlled APF, unlike the current-controlled APF, can reduce the voltage harmonics as well as current harmonics. Also the results showed that the input power factor was greatly improved.

  • PDF