• Title/Summary/Keyword: singular potential nonlinearity

Search Result 3, Processing Time 0.017 seconds

EXISTENCE OF THE SOLUTIONS FOR THE SINGULAR POTENTIAL ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.20 no.1
    • /
    • pp.107-116
    • /
    • 2012
  • We investigate the multiple solutions for a class of the elliptic system with the singular potential nonlinearity. We obtain a theorem which shows the existence of the solution for a class of the elliptic system with singular potential nonlinearity and Dirichlet boundary condition. We obtain this result by using variational method and critical point theory.

SINGULAR POTENTIAL BIHARMONIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.21 no.4
    • /
    • pp.483-493
    • /
    • 2013
  • We investigate the multiplicity of the solutions for a class of the system of the biharmonic equations with some singular potential nonlinearity. We obtain a theorem which shows the existence of the nontrivial weak solution for a class of the system of the biharmonic equations with singular potential nonlinearity and Dirichlet boundary condition. We obtain this result by using variational method and the generalized mountain pass theorem.

ON THE ORBITAL STABILITY OF INHOMOGENEOUS NONLINEAR SCHRÖDINGER EQUATIONS WITH SINGULAR POTENTIAL

  • Cho, Yonggeun;Lee, Misung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1601-1615
    • /
    • 2019
  • We show the existence of ground state and orbital stability of standing waves of nonlinear $Schr{\ddot{o}}dinger$ equations with singular linear potential and essentially mass-subcritical power type nonlinearity. For this purpose we establish the existence of ground state in $H^1$. We do not assume symmetry or monotonicity. We also consider local and global well-posedness of Strichartz solutions of energy-subcritical equations. We improve the range of inhomogeneous coefficient in [5, 12] slightly in 3 dimensions.