• Title/Summary/Keyword: skin microbiota

Search Result 13, Processing Time 0.026 seconds

Effect of the supplementation of pig skin collagen on growth performance, organ weight, blood characteristics and intestinal microbiota in broilers

  • An, Ji Seon;Yun, Won;Lee, Ji Hwan;Oh, Han Jin;Kim, Young Gwang;Bae, In Kyu;Kim, Kwon Jung;Lee, Ju Ho;Kim, Gok Mi;Choi, Yang Il;Cho, Jin Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.559-567
    • /
    • 2019
  • This experiment was conducted to investigate the effects of pig skin collagen supplementation on growth performance, organ weight, blood characteristics, and intestinal microbiota in broilers. A total of 50 Ross 308 broilers were used for 2 weeks. The five dietary treatments were as follows: NC) basal diet, PC) NC + fish collagen powder 0.1%, T1) NC + pig skin collagen 0.1%, T2) NC + pig skin collagen 0.5%, and T3) NC + pig skin collagen 1.0%. The body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) were not affected (p > 0.05) by the dietary treatments in this experiment. Additionally, there were no significant differences (p > 0.05) in the organ weights among the treatments. Broilers fed T1, T2 and T3 diets had higher (p < 0.05) white blood cell (WBC) counts than the broilers fed the NC and PC diets. The Lactobacillus counts in the excreta were improved (p < 0.05) in the broilers fed the T1 and T2 diets. Moreover, the Salmonella counts in the excreta were decreased (p < 0.05) in the broilers fed the PC and T1 diets. In conclusion, supplementation of pig skin collagen in diets improved the white blood cells (WBCs) in the blood and Lactobacillus counts in the excreta, and reduced the Salmonella counts in the excreta. However, when pig skin collagen was increased in the diets, there were no significant differences (p > 0.05). Therefore, the addition of 0.1% pig skin collagen in the feed provided beneficial effects on the blood characteristics and the intestinal microbiota environment.

Effects of Cosmetics and Their Preservatives on the Growth and Composition of Human Skin Microbiota (피부 미생물총의 생장과 구성에 대한 화장품과 그 방부제의 영향)

  • Jeong, Jin-Ju;Kim, Dong-Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.2
    • /
    • pp.127-134
    • /
    • 2015
  • We investigated the growth-inhibitory activities of cosmetics and their preservatives against pathogens and resident skin bacteria. Of the tested cosmetics, preservatives such as parabens, 1,2-hexanediol, phenoxyethanol-contained toner, emulsion, cream and baby cream exhibited potent antibacterial effects against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Parabens, 1,2-hexanediol and phenoxyethanol inhibited the growth of pathogens, as well as skin-resident bacteria such as Staphilococcus epidermidis, Shigella flexneri, Enterobacter aerogenes and so on. The application of a basic cream containing phenoxyethanol to human skin was shown to disturb the skin microbiota: at the phylum level, Proteobacteria increased and at species level, 4P004125_s increased and Propionibacterium humerusii decreased. Based on these findings, parabens, 1,2-hexanediol and phenoxyethanol have antimicrobial activity and cosmetics containing phenoxyethanol may disturb skin microbiota.

Influence of Panax ginseng formulation on skin microbiota: A randomized, split face comparative clinical study

  • Hou, Joon Hyuk;Shin, Hyunjung;Shin, Hyeji;Kil, Yechan;Yang, Da Hye;Park, Mi Kyeong;Lee, Wonhee;Seong, Jun Yeup;Lee, Seung Ho;Cho, Hye Sun;Yuk, Soon Hong;Lee, Ki Yong
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.296-303
    • /
    • 2022
  • Background: Skin microbiota is important for maintenance of skin homeostasis; however, its disturbance may cause an increase in pathogenic microorganisms. Therefore, we aimed to develop a red ginseng formulation that can selectively promote beneficial bacteria. Methods: The effects of red ginseng formulation on microorganism growth were analyzed by comparing the growth rates of Staphylococcus aureus, S. epidermidis, and Cutibacterium acnes. Various preservatives mixed with red ginseng formulation were evaluated to determine the ideal composition for selective growth promotion of S. epidermidis. Red ginseng formulation with selected preservative was loaded into a biocompatible polymer mixture and applied to the faces of 20 female subjects in the clinical trial to observe changes in the skin microbiome. Results: Red ginseng formulation promoted the growth of S. aureus and S. epidermidis compared to fructooligosaccharide. When 1,2-hexanediol was applied with red ginseng formulation, only S. epidermidis showed selective growth. The analysis of the release rates of ginsenoside-Rg1 and -Re revealed that the exact content of Pluronic F-127 was around 11%. The application of hydrogel resulted in a decrease in C. acnes in all subjects. In subjects with low levels of S. epidermidis, the distribution of S. epidermidis was significantly increased with the application of hydrogel formulation and total microbial species of subjects decreased by 50% during the clinical trial. Conclusion: We confirmed that red ginseng formulation with 1,2-hexanediol can help maintain skin homeostasis through improvement of skin microbiome.

The Interkingdom Interaction with Staphylococcus Influences the Antifungal Susceptibility of the Cutaneous Fungus Malassezia

  • Juan Yang;Sungmin Park;Hyun Ju Kim;Sang Jun Lee;Won Hee Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.180-187
    • /
    • 2023
  • The skin is a dynamic ecosystem on which diverse microbes reside. The interkingdom interaction between microbial species in the skin microbiota is thought to influence the health and disease of the skin although the roles of the intra- and interkingdom interactions remain to be elucidated. In this context, the interactions between Malassezia and Staphylococcus, the most dominant microorganisms in the skin microbiota, have gained attention. This study investigated how the interaction between Malassezia and Staphylococcus affected the antifungal susceptibility of the fungus to the azole antifungal drug ketoconazole. The susceptibility was significantly decreased when Malassezia was co-cultured with Staphylococcus. We found that acidification of the environment by organic acids produced by Staphylococcus influenced the decrease of the ketoconazole susceptibility of M. restricta in the co-culturing condition. Furthermore, our data demonstrated that the significant increased ergosterol content and cell membrane and wall thickness of the M. restricta cells grown in the acidic environment may be the main cause of the altered azole susceptibility of the fungus. Overall, our study suggests that the interaction between Malassezia and Staphylococcus influences the antifungal susceptibility of the fungus and that pH has a critical role in the polymicrobial interaction in the skin environment.

Impact of Microbiota on Gastrointestinal Cancer and Anticancer Therapy (미생물 균총이 위장관암과 항암제에 미치는 영향)

  • Kim, Sa-Rang;Lee, Jung Min
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.391-410
    • /
    • 2022
  • Human microbiota is a community of microorganisms, including bacteria, fungi, and viruses, that inhabit various locations of the body, such as the gut, oral, and skin. Along with the development of metabolomic analysis and next-generation sequencing techniques for 16S ribosomal RNA, it has become possible to analyze the population for subtypes of microbiota, and with these techniques, it has been demonstrated that bacterial microbiota are involved in the metabolic and immunological processes of the hosts. While specific bacteria of microbiota, called commensal bacteria, positively affect hosts by producing essential nutrients and protecting hosts against other pathogenic microorganisms, dysbiosis, an abnormal microbiota composition, disrupts homeostasis and thereby has a detrimental effect on the development and progression of various types of diseases. Recently, several studies have reported that oral and gut bacteria of microbiota are involved in the carcinogenesis of gastrointestinal tumors and the therapeutic effects of anticancer therapy, such as radiation, chemotherapy, targeted therapy, and immunotherapy. Studying the complex relationships (bacterial microbiota-cancer-immunity) and microbiota-related carcinogenic mechanisms can provide important clues for understanding cancer and developing new cancer treatments. This review provides a summary of current studies focused on how bacterial microbiota affect gastrointestinal cancer and anticancer therapy and discusses compelling possibilities for using microbiota as a combinatorial therapy to improve the therapeutic effects of existing anticancer treatments.

Breast abscess caused by Staphylococcus aureus in 2 adolescent girls with atopic dermatitis

  • Park, Sung Man;Choi, Won Sik;Yoon, YoonSun;Jung, Gee Hae;Lee, Chang Kyu;Ahn, So Hyun;Yoon, Wonsuck;Yoo, Young
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.6
    • /
    • pp.200-204
    • /
    • 2018
  • Atopic dermatitis (AD) is a chronic inflammatory skin disease in children. Patients with AD experience a high rate of colonization of the skin surface by Staphylococcus aureus. Because of a skin barrier defect, there is a potential risk of staphylococcal invasive infection in patients with AD. Here, we present 2 cases of breast abscess caused by S. aureus in 2 adolescent girls with severe AD. Methicillin-sensitive S. aureus was identified from the breast abscess material. They were treated with appropriate antibiotics, however surgical drainage of the abscess was needed in case 1. Identical strains were found from the breast abscess material as well as the lesional and the nonlesional skin of the patients through matrix-assisted laser desorption/ionization time-of-flight analysis. We characterized the differential abundance of Firmicutes phylum in patients' skin in microbiota analysis. In particular, S. aureus, a member of Firmicutes, differed significantly between the lesional and the normal-appearing skin. Our cases demonstrate the potential severity of bacterial deep tissue infection in AD and the dysbiosis of skin microbiota may be involved in inflammation in AD.

Changes in the Microbial Community of the Mottled Skate (Beringraja pulchra) during Alkaline Fermentation

  • Park, Jongbin;Kim, Soo Jin;Kim, Eun Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1195-1206
    • /
    • 2020
  • Beringraja pulchra, Cham-hong-eo in Korean, is a mottled skate which is belonging to the cartilaginous fish. Although this species is economically valuable in South Korea as an alkaline-fermented food, there are few microbial studies on such fermentation. Here, we analyzed microbial changes and pH before, during, and after fermentation and examined the effect of inoculation by a skin microbiota mixture on the skate fermentation (control vs. treatment). To analyze microbial community, the V4 regions of bacterial 16S rRNA genes from the skates were amplified, sequenced and analyzed. During the skate fermentation, pH and total number of marine bacteria increased in both groups, while microbial diversity decreased after fermentation. Pseudomonas, which was predominant in the initial skate, declined by fermentation (Day 0: 11.39 ± 5.52%; Day 20: 0.61 ± 0.9%), while the abundance of Pseudoalteromonas increased dramatically (Day 0: 1.42 ± 0.41%; Day 20: 64.92 ± 24.15%). From our co-occurrence analysis, the Pseudoalteromonas was positively correlated with Aerococcaceae (r = 0.638) and Moraxella (r = 0.474), which also increased with fermentation, and negatively correlated with Pseudomonas (r = -0.847) during fermentation. There are no critically significant differences between control and treatment. These results revealed that the alkaline fermentation of skates dramatically changed the microbiota, but the initial inoculation by a skin microbiota mixture didn't show critical changes in the final microbial community. Our results extended understanding of microbial interactions and provided the new insights of microbial changes during alkaline fermentation.

FFA2 Activation Ameliorates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis in Mice

  • Kang, Jisoo;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • v.28 no.3
    • /
    • pp.267-271
    • /
    • 2020
  • Gut microbiota produce dietary metabolites such as short-chain fatty acids, which exhibit anti-inflammatory effects. Free fatty acid receptor 2 (FFA2, formerly known as GPR43) is a specific receptor for short-chain fatty acids, such as acetate that regulates inflammatory responses. However, the therapeutic potential of FFA2 agonists for treatment of atopic dermatitis has not been investigated. We investigated the efficacy of the FFA2 agonist, 4-chloro-α-(1-methylethyl)-N-2-thiazoylylbenzeneacetanilide (4-CMTB), for treatment of atopic dermatitis induced by 2,4-dinitrochlorobenzene (DNCB). Long-term application of DNCB to the ears of mice resulted in significantly increased IgE in the serum, and induced atopic dermatitis-like skin lesions, characterized by mast cell accumulation and skin tissue hypertrophy. Treatment with 4-CMTB (10 mg/kg, i.p.) significantly suppressed DNCB-induced changes in IgE levels, ear skin hypertrophy, and mast cell accumulation. Treatment with 4-CMTB reduced DNCB-induced increases in Th2 cytokine (IL-4 and IL-13) levels in the ears, but did not alter Th1 or Th17 cytokine (IFN-γ and IL-17) levels. Furthermore, 4-CMTB blocked DNCB-induced lymph node enlargement. In conclusion, activation of FFA2 ameliorated DNCB-induced atopic dermatitis, which suggested that FFA2 is a therapeutic target for atopic dermatitis.

Profile Analysis of Bacteria in Human Hands Using the Terminal Restriction Fragment Length Polymorphism (T-RFLP) Analysis (제한효소 절편길이 다형성(T-RFLP) 분석기법을 이용한 손에 서식하는 세균의 군집조성 분석)

  • Park, Jisun;Kim, Seung Bum
    • Journal of Science Criminal Investigation
    • /
    • v.11 no.4
    • /
    • pp.276-282
    • /
    • 2017
  • As evidence that can be obtained at the crime scene, the importance of micro-evidences has been recognized in recent years with the development modern molecular-level analytical techniques. These micro-evidences include substances useful for personal identification such as DNA, but it is difficult to collect only the evidences showing individual characteristics every time at the crime scene. Therefore, development of new research approaches for the discovery and application of micro-evidence candidates is in increasing demand. For this purpose, skin microbial communities of bacteria inhabiting the palms of 16 people were collected and terminal-restriction enzyme fragment length polymorphism (T-RFLP) analysis was carried out to examine the potential for the application in personal identification. As a result, 16 different electropherograms were obtained, and various taxa including Staphylococcus and Bacillus were shown to produce different T-RF profiles among individuals. These results were analyzed with the factors affecting the microbiota such as sex and working environment of individuals.

Pear pomace alleviated atopic dermatitis in NC/Nga mice and inhibited LPS-induced inflammation in RAW 264.7 macrophages

  • You, Mikyoung;Wang, Ziyun;Kim, Hwa-Jin;Lee, Young-Hyun;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.577-588
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Poorly regulated inflammation is believed to be the most predominant factor that can result in a wide scope of diseases including atopic dermatitis (AD). Despite many studies on the effect of pear pomace in obesity-related disorders including dysregulated gut microbiota, the protective effect of pear pomace in AD is still unknown. This study aimed to evaluate the effect of pear pomace ethanol extract (PPE) on AD by inhibiting inflammation. MATERIALS/METHODS: In the in vivo experiment, 2, 4-dinitrochlorobenzene (DNCB) was applied to NC/Nga mice to induce AD-like skin lesions. After the induction, PPE was administered daily by oral gavage for 4 weeks. The clinical severity score, serum IgE levels, spleen weight, histological changes in dorsal skin, and inflammation-related proteins were measured. In the cell study, RAW 264.7 cells were pretreated with PPE before stimulation with lipopolysaccharide (LPS). Nitrite oxide (NO) production and nuclear factor kappa B (NF-𝛋B) protein expression were detected. RESULTS: Compared to the AD control (AD-C) group, IgE levels were dramatically decreased via PPE treatment. PPE significantly reduced scratching behavior, improved skin symptoms, and decreased ear thickness compared to the AD-C group. In addition, PPE inhibited the DNCB-induced expression of inducible nitrite oxide synthase (iNOS), the receptor for advanced glycation end products, extracellular signal-regulated kinase (ERK) 1/2, and NF-𝛋B. PPE inhibited the LPS-induced overproduction of NO and the enhanced expression of iNOS and cyclooxygenase-2. Moreover, the phosphorylation of ERK1/2 and NF-𝛋B in RAW 264.7 cells was suppressed by PPE. CONCLUSIONS: These results suggest that PPE could be explored as a therapeutic agent to prevent AD.