• Title/Summary/Keyword: sliding bearing

Search Result 247, Processing Time 0.031 seconds

Effects of Hardness on Sliding Wear Behavior of Tempered Bearing Steel (베어링강의 미끄럼 마모거동에 미치는 Tempering 경도의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.360-365
    • /
    • 2013
  • In this study, sliding wear tests were conducted to investigate the effects of tempered hardness on the sliding wear behavior of bearing steel. At a sliding speed of 0.3 m/s, the wear resistance of bearing steel with a tempered hardness of HRC 54 was superior to that with HRC 62. It was found that bearing steel with HRC 54 showed a strong tendency for the occurrence of oxidation wear at that speed, compared to that with HRC 62. This would be due to the troostitic structure of bearing steel with HRC 54, which is highly susceptible to corrosion. In this context, it is considered that sliding wear behavior could be affected by the corrosion resistance of the material.

Disturbance Observer Based Sliding Mode Control for Multi-DOF Active Magnetic Bearing System Subject to Base Motion (베이스 운동을 받는 다자유도 능동자기베어링계에서 외란 관측기 기반 슬라이딩모드 제어)

  • 강민식
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1182-1194
    • /
    • 2004
  • This paper addresses the application of an active magnetic bearing (AMB) system to levitate the elevation axis of an electro-optical sight mounted on a moving vehicle. In this type of system, it is desirable to retain the elevation axis in an air-gap between magnetic bearing stators while the vehicle is moving. To eliminate disturbance responses, a disturbance observer based sliding mode control is developed. This control can decouple disturbance observation dynamics from sliding mode dynamics and preserves the robustness of the sliding control. The sliding surfaces are designed in the consideration of scattering of received image. The proposed control is applied to a 2-DOF active magnetic bearing system subject to base motion. Along with experimental results, the feasibility of the proposed technique is illustrated.

Sliding Mode Control with Disturbance Observer for An Active Magnetic Bearing System (자기베어링계에서 외란 관측기를 갖는 슬라이딩모드 제어)

  • 강민식
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.6
    • /
    • pp.408-414
    • /
    • 2004
  • In this paper, a disturbance observer based sliding mode control is proposed to attenuate disturbance responses in an active magnetic bearing system, which is subject to base motion. An algorithm which decouples disturbance observation dynamics from sliding mode dynamics is suggested. This algorithm preserves the robustness of the sliding mode control and satisfies reachability condition in the presence of external disturbance and parameter uncertainties. Along with experimental results, it is shown that the proposed control is effective in disturbance rejection without any additive disturbance measurement.

Sliding Mode Control with Disturbance Observer for An Active Magnetic Bearing System (능동자기베어링계에서 외란관측기를 갖는 슬라이딩모드 제어)

  • Kang, Min-Sig
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.846-851
    • /
    • 2004
  • In this paper, a sliding mode control based on disturbance observer is proposed to attenuate disturbance responses in an active magnetic bearing system, which is subject to base motion. An algorithm for exactly decoupling the disturbance estimation dynamics from the sliding mode dynamics is developed. It is also shown that the proposed method preserves the robustness of the sliding mode and asymtotically achieves zero regulation error, in the presence of external disturbances and parametric uncertainties. The proposed control is applied to a 2-DOF active magnetic bearing system subject to base motion. The feasibility of the proposed technique is illustrated, and the results of an experimental demonstration are shown.

  • PDF

Sliding Mode Control for an Active Magnetic Bearing System (능동자기베어링계를 위한 슬라이딩모드 제어)

  • Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.82-88
    • /
    • 2008
  • This paper describes an application of sliding mode control to an active magnetic bearing(AMB) system. A sliding mode control is robust to model uncertainties and external disturbances. To ensure the authority of sliding mode control, model parameter uncertainties caused from linearization of electro-magnetic attractive force are analyzed and a domain of parameter uncertainties in which reachability to sliding surface is guaranteed is derived. The validity of the analysis is illustrated along with some simulation examples.

An absolute displacement approach for modeling of sliding structures

  • Krishnamoorthy, A.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.659-671
    • /
    • 2008
  • A procedure to analyse the space frame structure fixed at base as well as resting on sliding bearing using total or absolute displacement in dynamic equation is developed. In the present method, the effect of ground acceleration is not considered as equivalent force. Instead, the ground acceleration is considered as a known value in the acceleration vector at degree of freedom corresponding to base of the structure when the structure is in non-sliding phase. When the structure is in sliding phase, only a force equal to the maximum frictional resistance is applied at base. Also, in this method, the stiffness matrix, mass matrix and the damping matrix will not change when the structure enters from one phase to another. The results obtained from the present method using absolute displacement approach are compared with the results obtained from the analysis of structure using relative displacement approach. The applicability of the analysis is also demonstrated to obtain the response of the structure resting on sliding bearing with restoring force device.

Development of a Static and Dynamic Characteristics Analysis System for Machine -Tool Spindle Systems with 3 Lobe Sliding Bearings (3원호 미끄럼 베어링을 적용한 공작기계 주축계의 정적 및 동적 특성 해석시스템 개발)

  • 조재완
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.99-107
    • /
    • 2000
  • In this study, a static and dynamic characteristics analysis system for machine tool spindle systems with 3 lobe sliding bearing is developed based on Timoshenko theory, finite element method and windows programming techniques. And the characteristics value of 3 lobe sliding bearing such as eccentricity ratio, attitude angle, friction coefficient , stiffness coefficients, damping coefficients and so on, are determined by using the thermal equilibrium conditions of spindle systems. Since the developed system has various analysis modules related to static deformation analysis, modal analysis, frequency responses analysis and so on, it can be utilized to perform systematically the design an devaluation process of spindle systems with 3 lobe sliding bearing under windows GUI environment.

  • PDF

Surface Temperature in Sliding Systems Using the FFT Finite Element Analysis (FFT-FEM을 이용한 윤활 기구에서 표면온도에 관한 연구)

  • 조종두;안수익
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.73-79
    • /
    • 1999
  • Finite element equations by using fast Fourier transformation were formulated for studying temperatures resulting from frictional heating in sliding systems. The equations include the effect of velocity of moving components. The program developed by using FFT-FEM that combines Fourier transform techniques and the finite element method, was applied to the sliding bearing system. Numerical prediction obtained by FFT-FEM was in an excellent agreement of experimental temperature measurements.

  • PDF

Surface Temperature in Sliding Systems Using the En Finite Element Analysis (FFT-FEM을 이용한 윤활 기구에서 표면온도에 관한 연구)

  • 조종두;안수익
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.218-222
    • /
    • 2000
  • Finite element equations by using fast Fourier transformation were formulated for studying temperatures resulting from frictional heating in sliding systems. The equations include the effect of velocity of moving components. The program developed by using FFT-FEM that combines Fourier transform techniques and the finite element method, was applied to the sliding bearing system. Numerical prediction obtained by FFT-FEM was in an excellent agreement of experimental temperature measurements.

A Study on Wear Life and Mechanisms of TiN Coated Bearing Balls against Steel Disks (TiN 박막 처리될 베어링 볼의 마모 수명 및 메커니즘에 관한 연구)

  • 한지훈;조정우;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.378-384
    • /
    • 2000
  • This paper presents the results of the repeated sliding tests to determine the wear-life of TiN coated AISI 52100 bearing balls deposited by PVD method and to show the wear mechanisms of those. The sliding tests were carried out using a ball-on-disk tribometer under ambient conditions. The coefficient of friction, wear volume and the cycles to failures of TiN coated bearing balls were measured with different normal loads and roughness of lower specimens. On the wear-life diagram, the normal loads and the cycles to failure showed the good linear relation on log-log coordinate. With a decreasing normal load, the diagram showed that the wear-limits, at which the coated bearing balls survived more than 4000cycles were under 0.1N of the normal load.

  • PDF