• 제목/요약/키워드: small steel ball impact

검색결과 8건 처리시간 0.027초

일방향 및 직교형 유리섬유/에폭시 복합재로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동 (Surface Fracture Behaviors of Unidirectional and Cross Ply Glass Fiber/Epoxy Lamina-Coated Glass Plates under a Small-Diameter Steel Ball Impact)

  • 장재영;최낙삼
    • Composites Research
    • /
    • 제22권4호
    • /
    • pp.33-40
    • /
    • 2009
  • 유리섬유/에폭시 복합재료로 피막한 판유리의 표변파괴거동에 대한 섬유방향효과를 미소강구 충격실험을 통해 연구했다. 본 연구에서는 단순소다유리판(soda-lime glass plates), 일방향 유리섬유/에폭시박막 (glass/epoxy lamina ply)을 1층 및 2층 접착, 직교형 유리섬유/에폭시 박막 (2층)을 접착한 4종류의 시편을 사용하였다. 유리판 배면에 스트레인게이지를 부착하여 충격중의 최대 응력과 흡수파괴에너지를 측정하였다. 피막없는 판유리의 경우 충격속도 증가에 따라 링균열, 콘균열, 레이디얼 균열이 충격표면부에서 발생하였다. 복합재료 박막으로 피막한 결과, 소다유리판의 균열은 현저히 감소하였으며 섬유층과 판유리사이의 박리 및 소성변형영역의 방향은 섬유방향으로 진행했다. 최대응력과 흡수파괴에너지를 이용하여 구한 충격 표면파괴지수는 표면저항의 효과적인 평가지수로서 사용될 수 있었다.

직물형 유리섬유/에폭시 복합재료로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동 (Surface Fracture Response of Glass Eabric/Epoxy Lamina-Bonded Glass Plates to Impact with a Small-Diameter Steel Ball)

  • 김형구;최낙삼
    • Composites Research
    • /
    • 제13권4호
    • /
    • pp.75-82
    • /
    • 2000
  • 유리섬유/에폭시 복합재료로 피막한 유리판의 표면파괴거동을 연구하기 위하여 미소강구 충격실험을 수행하였다. 본 연구에서는 다섯 종류의 재료, 단순소다유리판(soda-lime glass plates), 유리섬유/에폭시박막(glass/epoxy lamina)을 1층 접착, 비접착한 시편과 박막을 3층 접착, 비접착한 시편을 사용하였다. 충격속도 범위 40∼120m/s에서 유리판 배면에서의 최대 응력과 흡수파괴에너지를 측정하였다. 충격 속도증가에 따라 링균열, 콘균열, 레이디얼 균열이 시편 내부에서 발생하였다. 복합재료 박막으로 피막한 결과, 소다유리판의 균열은 현저히 감소하였으며 측정한 최대 응력과 흡수파괴에너지를 이용하여 표면 파괴거동 특성을 평가할 수 있었다.

  • PDF

타격조건에 따른 수박의 음파특성 (Acoustic Characteristics of Watermelon According to Impact Conditions)

  • 최동수;최규홍;이영희;이강진;김만수
    • Journal of Biosystems Engineering
    • /
    • 제27권1호
    • /
    • pp.67-76
    • /
    • 2002
  • This study was conducted to investigate the effects of impact conditions on the acoustic characteristics of a watermelon. The study was crucial to develop a device for nondestructive internal quality evaluation of a watermelon by an acoustic impulse response method. An impact device was constructed with a pendulum to hit the watermelon, a microphone to detect the acoustic impulse responses, and a digital oscilloscope and computer to store and analyze the data. The selected samples were Guemcheon cultivar watermelons(Citrulus Vulgaris Schrad) harvested on Oct. 20,1998. Sixty watermelons were tested on flour different types of sample holders, with four kinds of ball made of different materials, at four bevels of the angular position of the pendulum and distance from the watermelon to the microphone. Since the magnitudes of frequencies obtained by hitting with the steel and rubber ball were relatively small at the bandwidths of above 500 Hz, it was shown that the steel and rubber ball were not suitable far a hitting ball in the pendulum to get informations on internal quality of the watermelon. In case of using broth of the wood and acryl ball, almost the same and good acoustic responses were shown on the wide range of frequency bandwidth. Therefore, it seemed that the acryl ball was more suitable to the test than the wood ball in considering its mechanical properties. The acoustic characteristics of the watermelon were not shown a significant difference between the types of sample holder. The amplitudes of the acoustic signals and the magnitudes of frequencies from the whole samples increased with increase of the angular position of pendulum and with decrease of the distance from the watermelon to the microphone. However, the resonance resonance of the sample were almost the same regardless of the angular positions and the distances.

변형률 게이지 측정원리를 이용한 충격하중 측정 센서의 동적응답 특성에 관한 연구 (Study on the Dynamic Response Characteristics of Impact Force Sensors Based on the Strain Gage Measurement Principle)

  • 안중량;김승곤;성낙훈;송영수;조상호
    • 화약ㆍ발파
    • /
    • 제29권1호
    • /
    • pp.41-47
    • /
    • 2011
  • 발파에 의한 암반손상영역을 평가하고 암반 파쇄도를 제어하기 위해서는 장약실 내 발생하는 폭발압력에 관한 정보는 중요하다. 이를 위하여 본 연구에서는 철, 알루미늄, 아크릴 재질의 센서에 대한 낙추 충격 시험으로부터 동적 변형률 신호를 측정하여 센서의 동적 응답 특성을 분석하였다. 철재 센서의 경우 충격하중에 가장 적은 변형률 출력 값을 보였으며 센서길이에 대한 출력 값의 변화는 적게 나타났다. 철제 센서를 뇌관의 충격하중 측정에 적용하였다.

Evaluation of Fracture Strength and Material Degradation for Weldment of High Temperature Service Steel Using Advanced Small Punch Test

  • Lee, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1604-1613
    • /
    • 2004
  • This paper presents an effective and reliable evaluation method for fracture strength and material degradation of the micro-structure of high temperature service steel weldment using advanced small punch (ASP) test developed from conventional small punch (CSP) test. For the purpose of the ASP test, a lower die with a minimized ${\Phi}$1.5 mm diameter loading ball and an optimized deformation guide hole of ${\Phi}$3 mm diameter were designed. The behaviors of fracture energy (E$\_$sp/), ductile-brittle transition temperature (DBTT) and material degradation from the ASP test showed a definite dependency on the micro-structure of weldment. Results obtained from ASP test were compared and reviewed with results from CSP test, Charpy impact test, and hardness test. The utility and reliability of the proposed ASP test were verified by investigating fracture strength, behavior of DBTT, and fracture location of each micro-structure of steel weldment for test specimen in ASP test. It was observed that the fracture toughness in the micro-structure of FL+CGHAZ and ICHAZ decreased remarkably with increasing aging time. From studies of all micro-structures, it was observed that FGHAZ microstructure has the most excellent fracture toughness, and it showed absence of material degradation.

적층구성 및 곡률 변화에 따른 CFRP 적층쉘의 관통특성 (The Penetration Characteristics of CFRP Laminated Shells on the Change of Stacking Sequences and Curvatures)

  • 조영재;김영남;양인영
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.79-85
    • /
    • 2006
  • CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structural materials for vehicle, has a wide application in light-weigh structural materials of airplanes, ships and automobiles because of high strength and stiffness, However, there is a design variable to be considered in practical application of the laminate composite materials, these materials are vulnerable to transverse impact. This paper is to study the effects of stacking sequence and curvature on the penetration characteristics of composite laminate shell. They are stacked to $[0_3/90_3]S,\;[90_3/0_3]s\;and\;[0_2/90_3/0]s,\;[90_2/0_3/90]s$ and their interlaminar number two and four. They are manufactured to various curvature radius (R=100, 150, 200mm and $\infty$), When the specimen is subjected to transverse impact by a steel ball, the velocity of the steel ball was measured both before and after impact by determing the time for it to pass two ballistics-screen sensors located a known distance apart. The critical penetration energy of specimen A and B with less interfaces were a little higher than those of C and D. As the curvature increases, the critical penetration energy increases linearly because the resistance to the in-plane deformation as well as bending deformation increases, which need higher critical penetration energy. The specimen A and C have higher critical penetration energy than B and D because of different stacking sequences. We examined crack length through a penetration test. For the specimen A with 2interfaces, the longest circumferential direction crack length were observed on the first interface from the impact point. For the specimen B 4-interface, the longest circumferential direction crack length were observed on the second interface from the impact point.

용접부 미세조직의 재질열화 평가를 위한 Advanced Small Punch 시험에 관한 연구 (A Study on Advanced Small Punch Test for Evaluation of Material Degradation in Weldment Microstructures)

  • 이동환;이송인;박종진;유효선
    • Journal of Welding and Joining
    • /
    • 제21권1호
    • /
    • pp.99-106
    • /
    • 2003
  • This research was aimed to evaluate the material degradation with various microstructures of X20CrMoV121 steel weldment by Advanced Small Punch(ASP) test. Due to the regional limitation on constitutive structures, the minimized loading ball(${\varphi}1.5mm$) and bore diameter of lower die(${\varphi}3mm$) were designed for the ASP test. The micro-hardness test was also performed to assess the mechanical properties with artificial aging heat treatment. Material degradation was estimated by ductile-brittle transition temperature(DBTT). The results obtained from the ASP test were compared with those from conventional small punch(CSP) test and CVN impact test for several weldment microstructures. It was found that the ASP test clearly showed the microstructural dependance on the material degradation in the weldment.

Numerical Simulation of High Velocity Impact of Circular Composite Laminates

  • Woo, Kyeongsik;Kim, In-Gul;Kim, Jong Heon;Cairns, Douglas S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.236-244
    • /
    • 2017
  • In this study, the high-velocity impact penetration behavior of $[45/0/-45/90]_{ns}$ carbon/epoxy composite laminates was studied. The considered configuration includes a spherical steel ball impacting clamped circular laminates with various thicknesses and diameters. First, the impact experiment was performed to measure residual velocity and extent of damage. Next, the impact experiment was numerically simulated through finite element analysis using LS-dyna. Three-dimensional solid elements were used to model each ply of the laminates discretely, and progressive material failure was modeled using MAT162. The result indicated that the finite element simulation yielded residual velocities and damage modes well-matched with those obtained from the experiment. It was found that fiber damage was localized near the impactor penetration path, while matrix and delamination damage were much more spread out with the damage mode showing a dependency on the orientation angles and ply locations. The ballistic-limit velocities obtained by fitting the residual velocities increased almost linearly versus the laminate diameter, but the amount of increase was small, showing that the impact energy was absorbed mostly by the localized impact damage and that the influence of the laminate size was not significant at high-velocity impact.