• Title/Summary/Keyword: small unmanned aerial vehicle

Search Result 135, Processing Time 0.03 seconds

A Study on Airworthiness Certification Standards for Military Small Rotary-Wing Unmanned Aerial Vehicles (군용 소형 회전익무인기 감항인증기준에 대한 연구)

  • Yang, Junmo;Lee, Sangchul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.78-83
    • /
    • 2021
  • In modern society, the use of small rotary-wing unmanned aerial vehicles such as drones is increasing. As the military considers tactics using drones, demand for drones is increasing. However, there is still no airworthiness certification standard for drones for safety. In this paper, we proposed airworthiness certification standards for small rotorcraft unmanned aerial vehicles based on CS-LURS in Europe and STANG-4703, 4738 (draft) of the North Atlantic Treaty Organization. In addition, airworthiness certification standards have been strengthened through the case of unmanned aerial vehicle accidents in operation by the Korean military. The airworthiness certification standards for small rotary-wing unmanned aerial vehicles will be supplemented through a demonstration project.

An Application Case of Systems Engineering Processes for a Small Unmanned Aerial Vehicle Development Project (소형 무인기 개발 사업에서 시스템엔지니어링 프로세스의 적용 사례)

  • Kim, Keun Taek
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.1
    • /
    • pp.58-65
    • /
    • 2022
  • An application case of systems engineering (SE) processes for the small unmanned aerial vehicle (UAV) development project, which was funded by the Korean government during June 2017 ~ August 2020, is briefly presented in this paper. From the beginning to the end of the project, SE processes had been applied and managed by simple and intuitive aspects for the small/medium business companies joined with insufficient experiences of SE. And the specific considerations of the processes were focused to the missions of disaster and public safety purposes required from the government, such as identification, patrol, fire, rescue, etc. As a result, the project applied by the tailored SE processes had been rated of a good and higher accomplishment on the final evaluation, and then the related several programs were prepared successively for the other opportunities.

Performance Analysis of an Electric Powered Small Unmanned Aerial Vehicle (전기동력 소형무인항공기의 성능분석)

  • Lee, Chang-Ho;Kim, Seong-Wook;Kim, Dong-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.226-230
    • /
    • 2010
  • In this paper, the performance of an electric powered small Unmanned Aerial Vehicle which has a battery and electric motor is analysed. Aerodynamic data is obtained through flight test and flight performance is predicted. As a result, we present the optimum flight speed for the maximum endurance and predict endurance and range according to the variation of flight speed.

  • PDF

A Study of Unmanned Aerial Vehicle Path Planning using Reinforcement Learning

  • Kim, Cheong Ghil
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.88-92
    • /
    • 2018
  • Currently drone industry has become one of the fast growing markets and the technology for unmanned aerial vehicles are expected to continue to develop at a rapid rate. Especially small unmanned aerial vehicle systems have been designed and utilized for the various field with their own specific purposes. In these fields the path planning problem to find the shortest path between two oriented points is important. In this paper we introduce a path planning strategy for an autonomous flight of unmanned aerial vehicles through reinforcement learning with self-positioning technique. We perform Q-learning algorithm, a kind of reinforcement learning algorithm. At the same time, multi sensors of acceleraion sensor, gyro sensor, and magnetic are used to estimate the position. For the functional evaluation, the proposed method was simulated with virtual UAV environment and visualized the results. The flight history was based on a PX4 based drones system equipped with a smartphone.

Improvement of Communication Reliability of Small UAV by a Tapered Stacked Antenna

  • Kim, Duck-Hwan;Lee, Kyu-Hwan;Kim, Young-Sik
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.796-798
    • /
    • 2006
  • This letter proposes a tapered stacked microstrip antenna for application in small unmanned aerial vehicles (UAVs), which has advantages in mountainous terrains. With its tapered structure and increased bandwidth designed to operate at the resonance frequency of 2.4 GHz, the proposed antenna improves directivity, accuracy, and precision of small UAVs. The test flight results show the proposed tapered antenna has a three times higher impedance capability of 350 MHz based on VSWR<2. The transmission pattern is also more reliable than that of previous antenna designs.

  • PDF

Development of Portable Ground Control System for Operation of Unmanned Aerial Vehicle (무인항공기 운용을 위한 이동형 지상제어 시스템 개발)

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.127-133
    • /
    • 2004
  • This paper described development of the portable ground control system(PGCS) for unmanned aerial vehicle. In the design of GCS, it upload mission planning that aircraft has to perform and has to receive position, attitude, state, navigation information all about the aircraft. Aircraft states and trajectory are displayed using this system on line. The PGCS is composed of commercial notebook computer, RF modem for communication between aircraft and PGCS, input/output board, remote control receiver, switches and lamps. Performance of this system is verified by flight test of small unmanned aerial vehicle.

Development of aerodynamic noise prediction technique for high efficiency and low noise design of unmanned aerial vehicle propeller (멀티로터형 무인항공기 프로펠러의 고효율 및 저소음 설계를 위한 공력 소음 예측 기법 개발)

  • Gwak, Doo Young;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.89-99
    • /
    • 2017
  • Multi-rotor type UAV (Unmanned Aerial Vehicle)s are expanding their applications not only for military purposes but also for private industries such as aerial photography and unmanned delivery vehicles. For wider use of unmanned aerial vehicles, studies should be carried out to improve aerodynamic efficiency and reduce noise of propellers, which can be achieved based on techniques of predicting aerodynamic performance and noise in a given environment. In this study, aerodynamic and noise prediction techniques were developed for a small unmanned aerial vehicle propeller, and it was verified by comparing it with actual measurement results. Thrust and torque due to the change of r/min and the frequency spectral prediction at a given position secured the reliability of the prediction method, which provides a basis for the shape design of the propeller.

Privacy Protection from Unmanned Aerial Vehicle (무인항공기 사생활 보호 방안)

  • Lee, Bosung;Lee, Joongyeup;Park, Yujin;Kim, Beomsoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.4
    • /
    • pp.1057-1071
    • /
    • 2016
  • Privacy-right infringement using unmanned aerial vehicle (UAV) usually occurs due to the unregistered small UAV with the image data processing equipment. In this paper we propose that privacy protection acts, Personal Information Protection Act, Information and Communications Network Act, are complemented to consider the mobility of image data processing equipment installed on UAV. Furthermore, we suggest the regulations for classification of small UAVs causing the biggest concern of privacy-right infringement are included in aviation legislations. In addition, technological countermeasures such as recognition of UAV photographing and masking of identifying information photographed by UAV are proposed.

Flight control of a small unmanned aerial vehicle using a dynamic compensator (동적 보상기를 이용한 소형 무인항공기 비행 제어)

  • Kim, Heui-Joo;Kim, Jea-Wook;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.571-577
    • /
    • 2012
  • In this paper, we design a flight controller using a dynamic compensator for a small unmanned aerial vehicle. The proposed method ensures flight stability during altitude holding and waypoints passing by improving the transient response and steady state error. The control system consists of dual feedback loops with an inner loop and a outer loop. The inner loop has a PD controller to improves the transient response and the outer loop has a dynamic compensator to reduce overshoot in the transient response and improve the steady state error. The performance of the proposed method is evaluated by flight test on a small UAV.