• 제목/요약/키워드: smoke control

검색결과 542건 처리시간 0.026초

PERFORMANCE EVALUATION OF PASSENGERS' EVACUATION FOR SMOKE-CONTROL MODES IN A SUBWAY STATION (지하역사 제연모드 승객피난 성능평가)

  • Park, Won-Hee;Chang, Hee-Chul;Jung, Woo-Sung;Lee, Han-Su
    • Journal of computational fluids engineering
    • /
    • 제13권4호
    • /
    • pp.8-12
    • /
    • 2008
  • Heat/smoke detectors are installed in most subway platforms in Korea to detect fire. Subway platform is divided by smoke-control zones for efficient smoke-control. Once the detectors detect heat or smoke, the smoke-control ventilation system in the platform and concourse is activated according to the smoke-control ventilation mode. Smoke-control mode during fires in Korean subway platforms is that the smoke zones operate by exhausting smoke while other zones in the platform and in the concourse which is the upper floor of the platform operate by supplying air or stopping any ventilation. This study is conducted to evaluate performance of passengers' evacuation for various smoke control modes in the subway station. Distribution of smoke and heat due to fire on the platform is analyzed by using Fire Dynamics Simulator(FDS V 4.06) of NIST. Various smoke-control ventilation modes and locations of fire are considered. Evacuation and movement of passengers within the platform is simulated by building EXODUS V.4.0.

Performance Evaluation of Passengers' Evacuation for Smoke-Control Modes in a Subway Station Based on CFD Results (전산열유체 해석결과를 이용한 지하역사 제연모드 승객피난 성능평가)

  • Park, Won-Hee;Jang, Yong-Jun;Lee, Han-Su;Chang, Hee-Chul;Lee, Duck-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.276-279
    • /
    • 2008
  • Heat/smoke detectors are installed in most subway platforms in Korea to detect fire. Subway platform is divided by smoke-control zones for efficient smoke-control. Once the detectors detect heat or smoke, the smoke-control ventilation system in the platform and concourse is activated according to the smoke-control ventilation mode. Smoke-control mode during fires in Korean subway platforms is that the smoke zones operate by exhausting smoke while other zones in the platform and in the concourse which is the upper floor of the platform operate by supplying air or stopping any ventilation. This study is conducted to evaluate performance of passengers' evacuation for various smoke control modes in the subway station. Distribution of smoke and heat due to fire on the platform is analyzed by using Fire Dynamics Simulator(FDS V 4.06) of NIST. Various smoke-control ventilation modes and locations of fire are considered. Evacuation and movement of passengers within the platform is simulated by buildingEXODUS V 4.0.

  • PDF

A Study on Smoke Movement by Using Large Eddy Simulation I. Smoke Control Systems and Extraction Flowrate (대와류모사를 이용한 연기이동의 연구 I. 제연방식과 배기풍량)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • 제18권2호
    • /
    • pp.40-45
    • /
    • 2003
  • To evaluate the smoke control systems, the large eddy simulation turbulence model based Fire Dynamics Simulate was applied to a 2m $\times$ 2m $\times$ 2.4m room with an opening. The smoke removal rate was investigated for three different smoke control systems: ventilation, extraction and pressurization. When the opening was closed, the smoke removal rates of the smoke control systems were almost the same as expected. The pressurization system showed a lower smoke removal rate compared with the other two smoke control systems for the room with the opening, and hence the pressurization system might not be efficient for a place with large openings. It was shown that the lower extraction flowrate is, the longer time the ventilation system requires to remove smoke. From these results, the ventilation system is recommended for subway stations where several large openings exist.

A Study on the Controller of Integration Smoke Control System (통합 제연시스템의 컨트롤러 개발에 관한 연구)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • 제20권1호
    • /
    • pp.77-82
    • /
    • 2006
  • This study defined engineering mechanism and compensation method to establish reference pressure of smoke control zone with atmospheric pressure that is compensated for temperature. The reliable controller of integration smoke control was developed by establishing the specifications, algorithms and constructing engineering data. The development of controller for integration smoke control can cut down number of processes, manufacturing and installation cost by removing pressure measurement pipe established separately for non smoke control zone, and improve the accuracy of pressure differential by embedding pressure measurement ports for non smoke control zone. More correct and reliable pressure differentials can be obtained by the central control from controller of integration smoke control rather than the existent individual control. This will provide the basics and the flexibility to the integral smoke control system and accordingly improve the performance of disaster prevention.

A Performance Evaluation of Zone Smoke Control Systems for Railway Underground Transit Passage by Smoke Control TAB (제연 TAB를 통한 철도 지하환승통로의 거실제연설비 성능평가)

  • Seol, Seok-Kyun;Kim, Joon-Hwan;Park, Min-Seok;Oh, Seung-Min;Ahn, Yong-Chul;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • 제31권1호
    • /
    • pp.1-9
    • /
    • 2017
  • This study conducted Testing, Adjusting, and Balancing (TAB), which is a type of field performance evaluation experiment of a zone smoke-control system, at a railway underground transit passage installed with a zone smoke- control system to find problems and improvements for ensuring performance. TAB for the smoke control system was classified into several procedures, such as design data review, duct leakage test, field measurement of the airflow rate, velocity of the fan and duct, and a smoke test. Through the duct leakage test, the system leakage ratio was examined to prove the duct sealing. The iImprovement of the smoke control airflow problems due to the lack of fan static pressure loss was the secured performance. The performance of the smoke control fan was secured by improvements of the smoke control airflow rate problems caused by the loss of static pressure in the intake duct. The smoke test in the smoke control zone confirmed that the damper operating schedule subject was influenced by natural wind or train wind.

A Study on the Integration Control System Development for Smoke Control (연기제어를 위한 통합제어시스템 개발에 관한 연구)

  • Lee, Dong-Myung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제6권4호통권23호
    • /
    • pp.15-20
    • /
    • 2006
  • This study developed integration control system that improve efficiency and give flexibility of smoke control system and can improve prevention of disasters performance. The reliable each kind sensor and of integration control system was developed by establishing the specifications, algorithms and constructing engineering data. More correct and reliable control function of optimization can be obtained by the central control from integration control system rather than the existent individual control. This sees to do to impose flexibility to smoke control system. Also, this will provide the basics of integration control system and ability security of smoke control system and can construct smoke control system of performance based.

A Study on Smoke Movement by Using Large Eddy Simulation II. Smoke Control Systems and Opening Size (대와류모사를 이용한 연기이동의 연구 II. 제연방식과 개구부의 크기)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • 제18권3호
    • /
    • pp.34-38
    • /
    • 2003
  • The large eddy simulation based Fire Dynamics Simulator was utilized to investigate the effects of the size of an opening on smoke removal performance for the three smoke control systems-ventilation purge, and extraction. Three different opening sizes, $r_A$=1, 2, and 3 were investigated while the flow rate remained 0.75 $m^3/s$ at the inlet or outlet depending on the systems. Increase of the opening size did not give a significant difference in the smoke removal rate for the three smoke control systems, though the increasing opening size slightly improved smoke removal. The extraction system was shown the best smoke control system, and the purge system yielded low performance compared to the other two systems for all the different opening sizes.

Simulation of a Clean Room Fire II. Needs of Smoke Control System and Springkler System (청정실 화재의 시뮬레이션 II. 제연설비와 스프링클러설비의 필요성)

  • Park, Woe-Chul;Lee, Man-Geun;Park, Hun-Sik
    • Fire Science and Engineering
    • /
    • 제20권2호
    • /
    • pp.8-13
    • /
    • 2006
  • Numerical simulations were carried out for a fire in a clean room to confirm needs of a smoke control system and a sprinkler system, and to investigate a possible smoke spread-out. For a 1 MW methanol fire in a space of $39m{\times}13m$ floor and 4 m high, smoke spread-out was scrutinized for failure of the sprinkler system and/or the smoke control system. It was shown that the smoke control system removes smoke safely without the sprinkler system and that the sprinkler system is required to suppress smoke generation and spread of the fire, and to remove the smoke quickly. It was also confirmed that highly reliable sprinkler heads and automatic fire detection system are required for the sprinkler and smoke control systems.

Scaled model tests for improvement and applicability of the transverse smoke control system on tunnels (횡류식 제·배연 시스템의 개선 및 적용성 분석을 위한 모형실험 연구)

  • Kim, Hyo-Gyu;Baek, Doo-San;Kim, Jae-Hyun;Lee, Seong-Won;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제22권5호
    • /
    • pp.563-574
    • /
    • 2020
  • Currently, road tunnels and railroad tunnels are building smoke control systems to emit toxic gases and smoke from fires. Among the various smoke control systems, the transverse smoke control system has the disadvantage that air supply or exhaust is performed on only half of the cross-section, rather than air supply or exhaust on the entire cross-section of the tunnel as air is supplied or exhausted by partitioning the wind path. Therefore, this study analyzed the effect of exhaustion through numerical analysis and scaled model tests on the zoning smoke control system, which improved the limitations of the transverse smoke control system. As a result of the scaled model test, the transverse ventilation system exhibited a 25.6% smoke control rate based on the state where no smoke was controled, and zoning smoke control system showed a smoke control rate of 40.8%. In addition, as a result of numerical analysis, it was found that transverse ventilation system did not control fire smoke spreading from the tunnel and continued to spread. On the other hand, zoning smoke control system was found to be smoke controled within a certain section due to the air curtain effect and the flue gas effect.

A Comparative Analysis of Domestic and Foreign Standards to Improve the Performance of Zone Smoke Control System (거실 제연설비 성능 개선을 위한 국내·외 기준 비교 분석에 관한 연구)

  • Huh, Ye-Rim;Kim, Yoon-Seong;Kim, Hye-won;Jin, Seung-Hyeon;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.83-84
    • /
    • 2022
  • In Korea, smoke control measures through NFSC 501 are proposed to reduce human casualties caused by smoke in the event of a fire. However, as a result of investigating and analyzing domestic and foreign standards, it was found that domestic regulations do not set fire source, but simply set smoke emissions by floor area or height of smoke boundary. Foreign regulations set fire source. Therefore, it is judged that it is necessary to review whether the current domestic regulations can be applied in the event of an actual building fire. So, this paper aims to identify the differences in domestic and foreign standards through investigation and analysis of related standards for fire zone smoke control system in each country and use them as basic data to improve the performance of zone smoke control system.

  • PDF