• Title/Summary/Keyword: snow load

Search Result 95, Processing Time 0.03 seconds

Analysis of Weather Data for Design of Biological Production Facility (생물생산시설 설계용 기상자료 분석)

  • Lee, Suk-Gun;Lee, Jong-Won;Lee, Hyun-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.156-163
    • /
    • 2005
  • This study was attempted to provide some fundamental data for safety structrural design of biological production facility. Wind load and snow load, acting on agricultural structures is working more sensitive than any other load. Therefore, wind speed and snow depth according to return periods for design load estimation were calculated by frequency analysis using the weather data(maximum instantaneous wind speed, maximum wind speed, maximum depth of snow cover and fall) of 68 regions in Korea. Equations for estimating maximum instantaneous wind speed with maximum wind speed were developed for all, inland and seaside regions. The results were about the same as the current eqution in general. Design wind speed and snow depth according to return periods were calculated and Local design wind load and snow load depending on return periods were presented together with iso-wind speed and iso-snow depth maps. The calculated design snow depth by maximum depth of snow cover were higher than design snow depth by maximum depth of snow fall. Considering wind speed and snow depth, protected cultivation is very difficult in Ullungdo, Gangwon seaside and contiguity inland regions, and strong structural design is needed in the west-south seaside against wind speed, and structure design of biological production facility in these regions need special consideration.

  • PDF

Buckling Load of Single-layered Lattice Roof Structure Considering Asymmetric Snow Load (비대칭 적설하중 적용을 통한 단층 래티스 지붕 구조물의 좌굴하중 특성)

  • Hwang, Kyung-Ju;Lee, Seung-Jae;Shon, Su-Deok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.3
    • /
    • pp.43-49
    • /
    • 2015
  • A single-layerd steel lattice roof, which has 50m span, was constructed. In order to figure out the realistic buckling load level, the structural analysis of this roof structure was performed especially by local snow load. Due to the characteristics of application of snow load, the load combinations of snow should be considered not only global area but also local part so that the critical buckling load could be observed as easy as possible. Geometrical imperfection was simulated to consider inaccurate shape of structure. And then nonlinear analysis were performed. Finally, this paper could investigate that the local snow load with geometrical imperfection decreased the level of buckling load significantly.

Buckling Load of Lattice Timber Roof Structure considering Stiffness of Connection with Asymmetric Snow Load (접합부 강성과 비대칭 적설하중 적용을 통한 목조 래티스 지붕 구조물의 좌굴하중 특성)

  • Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.69-76
    • /
    • 2023
  • A timber lattice roof, which has around 30m span, was constructed. In order to figure out the realistic buckling load level, the structural analysis of this roof structure was performed especially by stiffness of connection with various asymmetric snow load. Due to the characteristics of application of snow load, the load combinations of snow should be considered not only global area but also local part so that the critical buckling load could be observed as easy as possible. Geometrical imperfection was simulated to consider inaccurate shape of structure. And then nonlinear analysis were performed. Finally, this paper could investigate that the asymmetric snow load with the lower level stiffness of connection decreased the level of buckling load significantly.

Effect of Wire Bracing to Snow Load Acting on Vinyl House Frame (적설하중이 작용하는 비닐하우스 골조에 대한 강선보강효과)

  • Jung, Dong-Jo;Teng, Chhay
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.12 no.3
    • /
    • pp.27-34
    • /
    • 2010
  • Unbraced vinyl house frame that is economically installed is certainly easy to collapse under the influence of excess snow load. To make it more cheaply in putting up as well as more efficiently in withstanding the applied snow load, it is essential to insert additional bracing into the existing unbraced vinyl house frame. On the other hand, there are varieties of possible bracing shapes that can be formed. However, their efficiencies are different. Therefore, it is important to identify the most effective bracing shape. In this study, 2 different kinds of bracing shapes, horizontal and inclined bracing, are used to additionally install in the ordinary single frames in order to show the effect of the bracing resisting the applied snow load and compare the bending moment, axial force, combined stress and vertical displacement of the vinyl house frame.

Development of Snow Load Sensor and Analysis of Warning Criterion for Heavy Snow Disaster Prevention Alarm System in Plastic Greenhouse (비닐온실 폭설 방재 예·경보 시스템을 위한 설하중 센서 개발과 적설 경보 기준 분석)

  • Kim, Dongsu;Jeong, Youngjoon;Lee, Sang-ik;Lee, Jonghyuk;Hwang, Kyuhong;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.75-84
    • /
    • 2021
  • As the weather changes become frequent, weather disasters are increasing, causing more damage to plastic greenhouses. Among the damage caused by various disasters, damage by snow to the greenhouse takes a relatively long time, so if an alarm system is properly prepared, the damage can be reduced. Existing greenhouse design standards and snow warning systems are based on snow depth. However, even in the same depth, the load on the greenhouse varies depending on meteorological characteristics and snow density. Therefore, this study aims to secure the structural safety of greenhouses by developing sensors that can directly measure snow loads, and analysing the warning criteria for load using a stochastic model. Markov chain was applied to estimate the failure probability of various types of greenhouses in various regions, which let users actively cope with heavy snowfall by selecting an appropriate time to respond. Although it was hard to predict the precise snow depth or amounts, it could successfully assess the risk of structures by directly detecting the snow load using the developed sensor.

A Study on the Safety Frame Interval of Pipe Houses in Kyungpook Region (경북지방 파이프하우스의 안전골조간격에 관한 연구)

  • 이현우;이석건
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.195-202
    • /
    • 1995
  • As the pipe houses were constructed by imitation and routine without a structural design by now, they were often destructed by a strong wind or a heavy snowfall. The purpose of this study was to provide the basic data for the safety structural design of the pipe houses in Kyungpook region to prevent meteorological disaster. It was shown that the change of frame interval according to the safety factor under the wind load was similar that under the snow load. But the safety frame interval under the snow load was approximately 0.5-0.6m greater than that under the wind load for equal safety factor. Therefore, it seemed that the maximum safety frame interval was to be decided by the snow load. The frame of the pipe houses in Seungju region was structurally stable under the design snow load in recurrence intervals of 8-15years, but was unstable in Kolyong region.

  • PDF

A Study on the Structural Safety of the Roof Improvement Project (슬레이트지붕 개량사업 구조안전성 검토)

  • Kang, Kyung-Soo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2018
  • The roof improvement project is being carried out under the government's leadership for the sake of national welfare. The project is to replace the asbestos slate roof with a metallic one. In this study, the structural safety of the improved roof was examined and the project guidelines were reviewed. The causes of the roof damage were investigated and the structural analysis was performed for the roof frame subject to wind and snow loads. Metallic roof assemblies have higher strength and load resistance capability than usual slate ones, so the structural safety is governed by the frame. The stresses of the roof frame elements caused by the wind and snow loads were analyzed according to roof frame with various spacings between the rafters and the purlins. Wind load analysis was performed by 24, 28, and 38 m/sec of the basic wind speed. Snow load analysis was carried out by 0.5, 1.0 and $2.0kN/m^2$ of the ground snow load. As the analysis result, the current spacing and the size of the lumber did not satisfy the Korean building code specification. To secure the safety of the roof improvement project, the spacing of the roof frame elements and the size of the lumber should be determined based on the analysis results by structural engineers.

Assessment and Improvement of Snow Load Codes and Standards in Korea (한국의 적설하중 기준에 대한 평가 및 개선방안)

  • Yu, Insang;Kim, Hayong;Necesito, Imee V.;Jeong, Sangman
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1421-1433
    • /
    • 2014
  • In this study, appropriate probability distribution and parameter estimation method were selected to perform snowfall frequency analysis. Generalized Extreme Value (GEV) and Probability Weighted Moment Method (PWMM) appeared to be the best fit for snowfall frequency analysis in Korea. Snowfall frequency analysis applying GEV and PWMM were performed for 69 stations in Korea. Peak snowfall corresponding to recurrence intervals were estimated based on frequency analysis while snow loads were calculated using the estimated peak snowfall and specific weight of snow. Design snow load map was developed using 100-year recurrence interval snow load of 69 stations through Kriging of ArcGIS. The 2009 Korean Building Code and Commentary for design snow load was assessed by comparing the design snow loads which calculated in this study. As reflected in the results, most regions are required to increase the design snow loads. Thus, design snow loads and the map were developed from based on the results. The developed design snow load map is expected to be useful in the design of building structures against heavy snow loading throughout Korea most especially in ungaged areas.

Determination of Resonable Unit Snow Weight and Greatest Gust Speed for Design of Agricultural Structures and their Applications (농업시설의 설계하중 산정을 위한 적정 단위적설중량과 순간최대풍속의 결정 및 적용)

  • 손정익
    • Journal of Bio-Environment Control
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1994
  • Wind load or snow load, acting on agricultural structures is working more sensitive than any other load and therefore plays an important role in determination of design loads of agricultural structures. In this study, unit snow weight, greatest gust speed and depth of snow fall were analyzed and applied to determine the amount of frames. The unit snow weights were statistically classified and calculated in the basis of mean temperature and showed considerable differences between the unit snow weights at below and above -1$^{\circ}C$. Equations for estimating greatest gust speed with fastest wind speed were developed for inland and seaside districts. The calculated values from developed equations were little higher than those from the current equation in general. The difference between the depths of snow cover and snow fall, which shows the possibility of reduction of design loads under the adequate management. Design wind speed estimated by a modified equation suggested the amount of frames less than those by current one, and the depth of snow fall as a design snow depth suggested the amount of frames more than those of snow cover. Therefore, it is very important to select the adequate design values considering the characteristics of agricultural structures.

  • PDF

Comparison of Maximum Section Forces of Greenhouse Structures with respect to Roof Types (원예시설의 지붕형식에 따른 단면력의 비교분석)

  • 이석건;이현우;손정억;이종원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.84-89
    • /
    • 1994
  • Section forces of greenhouse structures were studied to suggest basic information for the structural design of greenhouses with respect to roof types and support conditions. Structural analyses were performed for pitched and arched roof, and fixed and hinged support under snow loads and wind loads. Followings are the results obtained and are expected to be useful in determining the span length and roof type in greenhouse design. 1. Special considerations might he required for roof design at the heavy snow region, and for the support design at the strong wind region, respectively. 2. Single-span structure was found to be stronger than multi-span structure under the snow load, but the former was found to be weaker than the latter under the wind load. 3. Arched roof structure was expected to be safer than pitched roof structure if the dimensions and loads were equal. 4. Greenhouse orientation and roof slope should be considered in optimum structural design of grrenhouses, because these two factors are closely related with the influence of wind load and snow load.

  • PDF